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FOREWORD

The present report is one of a series of six reports, published simul-
taneously, which describe analyses and computational procedures for: 1) pre-
diction of the in-depth response of charring ablation materials, based on one-
dimensional thermal streamtubes of arbitrary cross-section and considering
general surface chemical and energy balances, and 2) nonsimilar solution of
chemically reacting laminar boundary layers, with an approximate formulation
for unequal diffusion and thermal diffusion coefficients for all species and
with a general approach to the thermochemical solution of mixed equilibrium-
nonequilibrium, homogeneous or heterogeneous systems. Part I serves as a
summary report and describes a procedure for coupling the charring ablator
and boundary layer routines. The charring ablator procedure is described in
Part II, whereas the fluid-mechanical aspects of the boundary layer and the
boundary-layer solution procedure are treated in Part III. The approximations
for multicomponent transport properties and the chemical state models are
described in Parts IV and V, respectively. Finally, in Part VI an analysis ¢
is presented for the in~depth response of charring materials taking into ac-
count char-density buildup near the surface due to coking reactions in depth.

The titles in the series are:

Part I Summary Report: An Analysis of the Coupled Chemically Reacting
Boundary Layer and Charring Ablator, by R. M. Kendall, E. P.
Bartlett, R. A, Rindal, and C. B. Moyer.

Part 1II Finite Difference Solution for the In-depth Response of Charring
Materials Considering Surface Chemical and Energy Balances, by
C. B. Moyer and R. A. Rindal.

Part III Nonsimilar Solution of the Multicomponent Laminar Boundary Layer
by an Integral Matrix Method, by E. P. Bartlett and R. M. Kendall.

Part IV A Unified Approximation for Mixture Transport Properties for Multi-
component Boundary-Layer Applications, by E. P. Bartlett, R. M.
Kendall, and R. A. Rindal.

Part V A General Approach to the Thermochemical Solution of Mixed Equilib-
rium-Nonequilibrium, Homogeneous or Heterogeneous Systems, by
R. M. Kendall.

Part VI An Approach for Characterizing Charring Ablator Response with In-
depth Coking Reactions, by R. A. Rindal.

This effort was conducted for the Structures and Mechanics Division of
the Manned Spacecraft Center, National AReronautics and Space Administration
under Contract No. NAS9-4599 to Vidya Division of Itek Corporation with Mr.
Donald M. Curry and Mr. George Strouhal as the NASA Technical Monitors. The
work was initiated by the present authors while at Vidya and was completed
by Aerotherm Corporation under subcontract to vidya (P.O. 8471 v9002) after
Aerotherm purchased the physical assets of the Vidya Thermodynamics Depart-
ment. Dr. Robert M. Kendall of Aerotherm was the Program Manager and Prin-

cipal Investigator.
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ABSTRACT

A laminar nonsimilar boundary-layer procedure is described which yields
accurate solutions for a broad range of problems. In its current formula-
tion, solutions can be obtained for any equilibrium chemical environment with
specified rate-controlled reactions at the surface. It has been used to treat
a variety of ablating and nonablating surface boundary conditions including
coupled energy and mass balances. The formulation considers unequal diffu-
sion and thermal diffusion coefficients for all species in a particularly
convenient manner through a bifurcation approximation for binary diffusion
coefficients. The multicomponent viscosity and thermal conductivity of the
mixture are determined by use of Sutherland-wassiljewa type approximations.
The procedure is readily applicable to inclusion of one-dimensional radia-
tion emission and absorption and a general nonequilibrium chemical model.

The procedure combines features of the general integral relations approach
with those of matrix solution techniques. Following the former, smooth func-
tions (in particular, cubic spline functions) are chosen to relate the princi-
pal dependent variables to their derivatives. This enables the attainment of
an accurate solution with relatively few entries into the conservation equa-
tions (3 to 4 place accuracy with 7 to 1l spline points). From the latter,
the concept of treating the entire solution as a set of simultaneous, non-
linear algebraic equations is adopted. This technique results in linearized
coupling between all relations required to characterize the boundary layer,
and thus assures a general, rapid, and stable iterative convergence. As a
consequence, the damping of corrections has seldom been required. Computa-
tional speed appears to be an attractive feature based on the few comparisons
with other techniques which have been possible to date.
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AN INTEGRAL-MATRIX METHOD FOR NONSIMILAR
SOLUTION OF THE MULTICOMPONENT LAMINAR BOUNDARY LAYER

SECTION 1
INTRODUCTION

A computational procedure is described which is suitable for obtaining
accurate numerical solutions of the nonsimilar multicomponent laminar bound-
ary layer with arbitrary equilibrium or nonequilibrium chemical systems,
unequal diffusion and thermal diffusion coefficients for all species, radia-
tion absorption and emission, and a variety of surface boundary conditions
including intimate coupling with transient charring-ablation energy and mass
balances. A Fortran IV computer program has been developed in accordance
with this analysis with the exceptions that 1) the chemical system is presently
limited to equilibrium, with or without selected rate-controlled surface re-
actions or surface catalyzed reactions, and 2) radiation absorption and emis-
sion is not currently permitted. This computer program, designated BLIMP,
for Boundary Layer Integral Matrix Procedure, is described in Ref. 1.

The computational procedure has been developed while attempting to take
advantage of the most attractive features of other boundary-layer procedures.
In light of the application of the procedure to be adopted, certain specific
requirements seemed appropriate. In particular, minimization of the number
of "nodal points" required to obtain a solution was judged to be of prime
importance as a consequence of the relatively large times associated with
state calculations for a general chemical environment and, in the streamwise
direction, because of the desire to couple the boundary layer procedure to a

transient internal conduction or ablation solution.

For a given accuracy, the number of necessary '"nodal points" in the sur-
face normal direction is controlled primarily by the nature of the functions
which relate the dependent variables (and their derivatives) to the indepen-
dent variable. Thus the continuous functions typically used in integral
relations approaches require fewer "nodal points"* than the discontinuous
functions implied by most finite difference approximations. 1In order to per-
mit relatively flexible profiles, sets of connected cubics were selected to
represent enthalpy, velocity, and elemental concentrations. The first and
second derivatives of these cubics were made continuous at the connecting
points. The advantages of such a"spline fit" are considered, for example,
in Ref. 2.

T . 3
*The term "nodal point" is meant to encompasg the integral strips of Pallone
and the matching points used by Dorodnitsyn.




If the general integral relations approach is followed, weighting func-
tions must be selected. 1In the present study this selection was based pri-
marily on the complexity of the resultant algebra. Studies were made using
Dirac delta weighting functions (i.e., a differential approach*) and step
weighting functions similar to those used by Pallone3 which indicated,** when
other aspects of the procedure were unchanged, no definite superiority in
terms of accuracy or stability. Because all of the complexities introduced
by the generalization of the thermodynamic and transport properties of the
system occur within a divergence term, step weighting functions produce
markedly simpler algebra and, consequently, were adopted for the present
procedure.

In the past when relatively large spacing in the streamwise direction
has been desired, iterative procedures have generally been used to assure
accuracy and stability. In many instancess'6 these procedures have treated
the solution in a manner resembling those used for similar solutions but with
the addition of finite difference representations for the nonsimilar terms,

a procedure which eliminates the necessity of special starting techniques.
Using this basic approach, the specific treatment adopted in the current
study follows most closely the matrix procedure used by Leigh6 wherein the
‘iteration is a consequence of the solution of a set of linear and nonlinear
algebraic relations. Whereas a special successive approximation procedure
was used by Leigh, the general Newton-Raphson technique was used in the pres-
ent procedure. This technique results in linearized coupling between all
relations required to characterize the boundary layer, and thus assures a
more general, rapid and stable iterative convergence,

The present document concentrates on the fluid mechanical aspects of
the problem and describes the basic numerical solution procedure, The pro-
cedures employed for calculating the equilibrium state of the gas and sug-
gested for including rate-controlled reactions are described elsewhere7
since they are conveniently treated as subroutines to the basic boundary
layer computational procedure. However, the terms which are directly in-
volved in the boundary layer equations such as the "elemental source term"
which arises from kinetic considerations are included in the present develop-
ment. Similarly, radiation absorption and emission enters directly into the
conservation equations only as a net radiation flux term in the energy equa-
tion. The calculation of this term could also be conveniently accomplished
by a subroutine. A one-dimensional model for net radiation flux which rep-
resents an extension of the work of Ce558 to allow an angular-dependent in-

cident radiation flux at the boundary-layer edge is presented in Appendix E.

*This correspondence is pointed out by Dorodnitsyn.4
**The results of these studies are discussed in an appendix to this report.




Multicomponent transport properties are based on a newly developed approxima-
tion described in Ref. 9. Modification of the conservation equations as a con-
sequence of this approximation is described herein. Finally, the procedures
employed for coupling to a transient charring ablation program are described
in Ref. 10.

The governing differential equations for laminar or turbulent flow are
presented in Section 2. The laminar form of the equations are normalized by
a modified Levy-Lees transformation in Section 3. The modification consists
of a coordinate stretching parameter which permits the establishment of an
efficient universal boundary layer nodal network. 1In Section 4, the trans-
formed conservation equations are integrated and the connected-cubic func-
tional relationships are introduced through truncated Taylor series expan-
sions. The procedure utilized to solve these equations is described in
Section 5. First, the Newton-Raphson linear recurrence formulas are devel-
oped. A matrix reduction procedure is then described which takes full
advantage of the linear Taylor series expansions and simplifies the gener-
alization of surface boundary conditions.

In Section 6, comparisons to other numerical solutions are shown for
several uncoupled nonreacting boundary layer problems. Generally, 3-to 4-
place accuracy is obtained for 7-point boundary-layer solutions, and the
solution usually converges in 3 or 4 iterations. Solutions for chemically

reacting boundary layers are presented in Section 7.

SECTION 2
BOUNDARY LAYER CONSERVATION EQUATIONS

In this section are presented the differential equations which govern
laminar or turbulent flow in a planar or axisymmetric compressible boundary
layer with mass addition, equilibrium or nonequilibrium chemical reactions,
multicomponent diffusion, thermal diffusion, and radiation. Unequal diffu-
sion and thermal diffusion coefficients for all diffusing pairs are in
accordance with the unified approximation presented in Ref., 9. The equations
derived are essentially an extension of those derived in Ref. 1l to include
radiation, thermal diffusion, and unequal binary-diffusion coefficients. The
diffusion introduced by pressure gradients and body forces are neglected.

The standard definitions of time-averaged turbulent quantities and rela-
tive order of magnitude are employed (Refs. 11 and 12). The turbulent trans-
port terms are expressed in the Boussinesq form, that is, eddy viscosity,
eddy diffusion, and eddy conductivity. Hence, all the terms in the equations




are time-averaged gquantities and no need exists for using a superscript bar.*
In the order-of-magnitude arguments, terms of the following types have been
eliminated: 1) triple correlations, 2) derivatives of turbulent correla-
tions parallel to the wall, and 3) correlations involving turbulent coméo-
nents of molecular transport mechanisms.

A mass balance of an individual species in a unit volume results in the

relationship
dK.
1 3 % 3 - i ,
o %3S PUK; TS Y Iy [PYRy T 3y (peni sy~ Ji] TV 1
o]

where s and y are the streamwise and normal coordinates, respectively,
u and v are the velocity components in the s and y directions, respec-
tively, Ki is the mass fraction of species i, r, is the radius of the
body in a meridian plane for an axisymmetric shape, # is zera for a flat
plate and unity for a body of revolution, p is the density, wi represents
the rate of mass generation of species i per unit volume due to chemical
reaction, peDi is defined in terms of the correlation of the fluctuating

components of concentration and normal velocity, that is,

va5'K;
Pep, T T TR /Ay (2)

1

and ji is the mass~diffusion rate of species 1 due to molecular processes.

When Eq. (1) is summed over all the species in the system, utilizing

0K .
e

i i

which results from the definition of mass diffusion, and utilizing

*Accordingly, pv represents pv, not p V.




which results from conservation of mass, there results

spur *
1 o pv
;—;-33———— + Y = 0 (3)
o

which is the familiar global continuity equation.

when Eq. (3) is considered together with Eq. (1), the more conventional

species conservation equation is obtained:

. 3K,
i i _ 2 i .
pu 55— + pv = 3y (peDi 5 Igh+ vy (4)

The streamwise momentum equation can be written as

pu§—§+pvﬂ=°—{p(v+e)ﬂ]-9€ (5)

where P is the pressure and the eddy viscosity is defined in terms of the
Reynolds stresses of turbulent flow by

Iul
D i "

The momentum equation for forces and fluxes normal to the surface is

given by

LU (7)

where r, is the radius of curvature of a surface streamline.

The energy equation for this general system is

dH oH
T T _ 3
pu s t v Ty p(e
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(equation continued on next page)



(equation continued from previous page)
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where Hp, is the total enthalpy (static plus kinetic)
- w

Hp = h+3 (9)

h 1is the static enthalpy including chemical as well as sensible contribu-

h o= Z K, (10)

tions

i
hi is the static enthalpy of species i
T
_ o
hi = f cp.d'r+hi (11)
i
(o)

T is the temperature, h? is the heat of formation of species i, CPi is
the specific heat of species i, C is the frozen specific heat of the

T = , 12
e Z chPi (12)

A is the thermal conductivity, R is the gas constant, xj is the mole

gaseous mixture

fraction of species j, mi is the molecular weight of species i, &4 is

ij
the binary diffusion coefficient of species i into j, DiT is the multi-
component thermal diffusion coefficient of species i, the turbulent enthalpy-

transport coefficient is defined by

Z Ki(PV) 'hil
1
pe, = - (13)
H ), (3n/ay)
i




and q. is the net one-dimensional energy flux towards the surface due to
radiation absorption and emission.* In Eq. (8) the turbulent contribution

to the DuFour effect (the double summation term) has been neglected since
significant diffusion thermo occurs only in the laminar region where tempera-

ture gradients are severe,

When the assumption of equal diffusion coefficients is made, a substantial
simplification of the problem results if the species conservation Egquations
(4) are multiplied by Qpyi? defined as the mass fraction of element k in
species i, and the resulting terms are summed over all species (known
as the Shvab-Zeldovich transformation). when this is done, there is a re-
duction in the number of conservational equations from the number of species
(typically 20 to 50) to the number of elements (usually 2 to 6). In addition,
the resulting equations are simplified since the source terms are eliminated.
Furthermore, elements vary more smoothly across the boundary layer than do
the molecular species, and hence are better represented numerically. To illus-
trate, when all binary-diffusion coefficients are assumed equal and in the

L T

absence of thermal diffusion, the ji can be expressed by Fick's law

bKi

Substituting this into Eq. (4) and performing the Shvab-Zeldovich transforma-
tion results in the following elemental conservation equations for the laminar
or turbulent boundary layer:

(15)

e . %K
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where Rk is the mass fraction of element k in the system defined by

zz: akiKi (16)

i

1}

%

It has also been assumed that all €y, = eD.
i

When diffusion coefficients are not equal, Fick's law does not apply.
The diffusional fluxes, ji' must then be expressed in terms of multicomponent

diffusion coefficients, Bij

*A model for g, which allows an angular-dependent incident radiation flux at
the boundary~layer edge is developed in Appendix E.
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or via the Stefan-Maxwell relations13

T3 4n T : T3 £4n T
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Utilization of the Stefan-Maxwell equations in conjunction with the species
conservation equations is awkward even in the absence of thermal diffusion
effects, since the diffusional flux, ji' is expressed implicitly in terms of
mole fractions and their gradients. Hence, use is often made of Eg. (17)
togather with the multicomponent diffusion coefficients, for example, in
Refs. 14 through 16. However, each of the (I®-I) multicomponent diffusion
coefficients depends upon local concentrations and upon (I°-I)/2 symmetric
binary diffusion coefficients, ﬁij' where I is the total number of species

being considered.

A bifurcation approximation to binary diffusion coefficients introduced
by Bird17

relations for ji in terms of gradients and properties of species i and

and utilized herein permits explicit solution of the Stefan-Maxwell
of the system as a whole. The approximation can be expressed in the form:

biy ™ D/FiFj (19)

with D(T,p) a property of the given multicomponent mixture and Fi(T) a
property of the ith species in the mixture.* 1t is apparent when consider-
ing more than 3 species** that Eq. (19) is indeed approximate, since (I®-I)/2
diffusion coefficients, ﬁij, are replaced by I diffusion factors, Fi'
Equation (19) should thus be viewed as a correlation equation for actual
binary diffusion coefficient data. The Fi are determined for a given chem-

ical system by a least-squares fit of actual diffusion data.

*The effect of pressure can be absorbed entirely into the D since
inversely proportional to pressure. It will be shown that the domlnan%
temperature effect can also be absorbed into the D so that the F; are
nearly constants for a given molecular set.

**Eq. (19) is exact for a ternary system.
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The accuracy of the correlation was investigated by Bird
component mixture containing hydrogen and shown to be surprisingly good, the
maximum error in any ﬁij being 4 percent. In order to establish more gen-~
erally the adequacy of the approximation, correlations were performed for
several chemical systems including a l6-component (120 ﬂij) C-H-0-N system.9
These studies have demonstrated that Eg. (10) has general applicability, and
represents the ﬁij for nearly all diffusing pairs within 5 percent. The
largest single error in ﬁij obtained in these correlations has never ex-

ceeded 15 percent or so.

Introducing this approximation into the Stefan-Maxwell relations, it is

shown in Ref, 9 that the ji can be expressed explicitly as

pﬁuz 32, 3 4n u,
+Ki77( 1d.€nF_ Kd!,nFJ)~znT
Mo F d 4Zn T F. din T 3y
J
T3 £n T
+ Di 3y (20)

where Z; is a quantity which for unequal diffusion lies between a mass and

a mole fraction and is defined by

m.x.
iTi

Z. = —m—— (21)
i FiMa

and My and M, are system quantities defined by

Z Z m.x. )
v = x.F. M = (22
1 373 2 : Fj

]

It can be seen from Egs. (21) and (22) that 2: z; = 1. Wwhen diffusion coef-
ficients are assumed equal, setting F; = 1 yields 2Z2; = Kj, p1 =1, and u3 = 7.

In Ref. 9 it was observed that the Fi are weak functions of tempera-

ture. Thus Eq. (20) can often be simplified to
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Substituting Eq. (23) into the boundary-layer species conservation equa-
tion (Eq. (4)) and performing the Shvab-Zeldovich transformation yields9 the
following conservation equations for chemical elements in a multicomponent,

laminar or turbulent boundary layer with unequal diffusion coefficients:

bl
=

|
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i
where Ek is defined by Eq. (16) and

Z, = E:akizi (25a)

i
G =) agy (25b)

i

The term ¢, requires some discussion, Introduction of the Shvab-Zeldovich
transformation eliminates the chemical production terms wi when the boundary
layer is everywhere in local equilibrium since wk is then equal to zero. With
the introduction of nonequilibrium, the approach of Ref. 7 generalizes the term
"element" and results in an expanded (in terms of "elements", k) Oy array, tak-
ing advantage of all equilibrium aspects of the system. As a consequence, the
¢k may no longer equal zero and thus cannot, in general, be omitted from Eq.
(24) . This general mixed equilibrium, nonequilibrium approach results in more
equations of the form of Eq. (24) than in the purely equilibrium system. Except
in the limit of all reactions being kinetically controlled, the number of equa-

tions of the form of Eg. (24) is, however, less than the number of molecular
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conservation equations (Eq. (4)). The local state of the gas for this nonequi-
librium system is defined in terms of the expanded set of "elements"., The pro-
duction or destruction rates, ¢k' of these "elements" becomes a state property
and can be evaluated along with other local system properties.

It should be noted that the Shvab-Zeldovich transformation is still
possible without the approximation for ﬁij embodied in Eg. (19), but solu-
tion then depends upon (I®-I) multicomponent diffusion coefficients, each
of which depends upon (I®-1)/2 symmetric binary diffusion coefficients and
upon concentrations of all species. Therefore, use of the approximation for
ﬂij embodied in Eq. (19) should be looked upon as a computational convenience.

T

At this point the multicomponent thermal diffusion coefficients, Di ’

still appear in the conservation relations. Theoretical equations for DiT

are quite complicated13 and these have to be solved at every boundary-layer
point since they are strongly concentration dependent. Therefore, a correla-
tion of binary thermal diffusion data was conducted9 which yielded, upon gen-

eralization to multicomponent systems, the following simple relation:

e, pDu
T t 2
Di A5 —an (Zi - Ki) (26)

T

with the empirical constant c¢ about -0.5. This approximation for Di

satisfies the requirement thattthey sum to zero,13 the obserxvation that they
are independent of fluxes, and the assumption that thermal diffusion of spe-~
cies 1 should behave nearly as though it were in a system of species i
and a species representative of the mixture as a whole. The approximation
represents binary thermal diffusion data reasonably well (within 10 percent
or so, considering a wide range of molecular weights and variation of mass
fractions from zero to 100 percent). An accuracy study of multicomponent
DiT has not yet been accomplished. However, the generalizations which were
employed appear to be in basic accord with the approximate model for multi-

component thermal diffusion coefficients developed by Laranjeira,

Inserting this approximation into Egs. (24) and (8) and performing all
summations yields the following relations for diffusive mass flux of species
i, ji' diffusive mass flux of element Xk, jk' and diffusive heat flux, q,.

respectively

11
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The elemental species conservation equation thus becomes
2K 3Ry 3K
= & -5
PUFE * PV Iy = 3y (PSp By I )+ Pk (29)
while the energy equation can be expressed as
3K JH,
T T _ 9 /_
pu 35— + PV 3y~ 3y qy + 9, (30)

Equations (27a) through (27c¢) are derived in Appendix A. For assumed equal

diffusion coefficients, My = 1/m, Ep = Eé, and ® = h. When thermal diffu-

sion is to be neglected cy = 0 and My = in Mo

Equations (3}, (5), (7), (29), and (30) comprise the boundary-layer
conservation equations incorporating the approximations for unequal thermal
and multicomponent diffusion coefficients embodied in Egs. (19) and (26).
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should be emphasized that the numerical solution procedure described in a
later section is not dependent upon the use of these convenient approxima-
tions.

Any consistent set of boundary conditions can be applied which yield, in
effect, u/ue, HT' and the ﬁk and their first derivatives at the edge of the
boundiry layer, and wall values of u/ue, mass flux, HT (or its gradient), and
the Kk (or their gradients). Specific boundary conditions will be introduced
in Section 3,

The mathematical specification of the boundary-layer problem is completed
by introduction of the remaining multicomponent transport properties, the equa-
tion of state for a gaseous mixture, the equilibrium relations, and the kinetic
relations. These are described in Refs. 7 and 9.

SECTION 3

THE TRANSFORMED NONSIMILAR LAMINAR BOUNDARY-LAYER EQUATIONS

From the original formulations of Blasius, a continuing effort has been
expended in the search for more general means of reducing the partial-differ-
ential equations of the boundary layer to total-differential equations. Bas-
ically, this involves the search for a new coordinate system (n,§) related
to the original system (y,s) and certain of the dependent variables, in which
the £&-wise variations of functions of the dependent variable either vanish
or become of second order. A successful similarity transformation, as this
is called, results in &-derivatives vanishing, but this occurs only under
certain conditions which are generally quite restrictive. Currently, the
most popular transformation represents a combination of the Levy and Mangler
and the Howarth-Dorodnitsyn transformations. This particular form was sug-
gested by Lees (Ref. 19) among others, and is known by a variety of names
including Lees-Dorodnitsyn, Levy-Lees, Mangler-Dorodnitsyn, and Dorodnitsyn-
Stepanov. This transformation is as follows:

S

= 2K
g = ,[ U PHets ds (31)
o
ronue Yy
n = j p dy (32)
V 28

where, in this and subsequent equations, the subscripts w and e refer,
respectively, to the wall and to a reference condition which can be taken as
the boundary-layer edge in the absence of an entropy layer (to be discussed).
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In this section, a slightly modified form of this transformation is
applied to the laminar form of the boundary-layer conservational equations
presented in Section 2. Although the boundary-layer equations remain partial-
differential equations when the nonsimilar terms are retained, the Levy-Lees
transformation is still quite advantageous, since it aids in the specifica-
tion of the boundary conditions, it eliminates the global conservation equa-
tion from the set of relations to be solved, and it normalizes the boundary-
layer thickness. In addition, the nonsimilar terms are often small; hence,
they can be investigated individually and eliminated for certain classes of

problems.

If the conventional Levy-Lees transformation embodieyd in Egs. (31) and
(32) is utilized, the transformed boundary-layer thickness is uniform for a
similar boundary layer. However, when the boundary layer is highly non-
similar (e.g., as a result of large blowing or suction, severe pressure gradi-
ents, or surface discontinuities) the transformed boundary-layer thickness
can vary by a factor of two or more. Therefore, it is useful to normalize
the boundary layer further by stretching the n coordinate:

T=¢ n=5- (33)
H
where Oy is a function of § only and is determined implicitly during the

numerical solution. This makes possible the efficient use of a universally
applicable nodal network which can be chosen a priori once and for all. The
use of such a universal nodal network is highly desirable as the linearity of
a large body of equations (Taylor series expansions of primary variables)
dquring the numerical solution procedure is retained. 1In addition, it reduces
the variation of boundary-layer parameters along a grid line from one stream-
wise station to the next.

Since a new variable aH(E) is introduced, an additional relation is re-
quired. This is conveniently supplied by constraining an internal nodal point
near the boundary-layer edge, ﬁc' to have a specified streamwise velocity,
c, near (but something less than) the edge value:

ft

= cf! (34)

e n

e
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where f is the stream function defined as

n n
£- £, =j 5 dn = onHj W an (35)
(] € o e

and the prime denotes partial differentiation with respect to 7, so that

(36)

m

[}

133
<|e

To illustrate, selection of ﬁe = 4.0, ﬁc = 2.4, and ¢ = 0.90 yields ay ~ 1.0
for the Blasius problem (incompressible flow along a flat plate at zero in-
cidence with no mass addition). The £ e is utilized in Eqg. (34) in anti-
cipation that the u/ue may not be unity at the edge of the boundary layer
for superorbital reentry problems involving an entropy layer or nonadiabatic

flow field.

In order to illustrate further the procedure, two extreme velocity dis-
tributions are compared in Figure 1 to the Blasius solution. The profiles
shown are those for a boundary layer near separation and one near blowoff.
These were calculated using the integral matrix method for numerical solution
of the boundary layer (described later). It can be seen that by the use of
the transformation (Eq. (33)) together with the arbitrarily chosen constraint
(Eg. (34)) that the boundary-layer edge occurs at about the same value of T
for the three problems. It should be noted that this is accomplished with
little mathematical complexity; only two terms involving derivatives of Oy

appear (both in the momentum equation).

Variation of Og with Reynolds number (proportional to E£) is shown in
Figure 2 for a nonsimilar boundary layer with constant blowing and one with
constant suction. These results were also obtained using the integral matrix
technique. The behavior of Oy is indicative of the increase (and decrease)
of the 7 at the edge of the boundary layer. The desirability of the stretch-
ing transformation is made apparent by this example. Without the use of the
transformation to T, the choice of an Nmax sufficiently large to charac-
terize accurately the boundary layer at large distances from the leading edge
would be inefficient near the leading edge. Furthermore, it would be re-

quired to make an estimate for Mmax 25 it is not known a priori.

15




p*z = U 3e 06°0 =g 03 psuTRI3SUOD OT3eY

A3TooTaA Buy3x Yyt U go SWIa] UT SOTTFOXd X3ITOOTSA Teisass °T 2aInbTd

b ‘ALVNIQHOOOD ISHIASNVHL EZI'TVINHON
0°1 0

0°9 0°§ 0% 0°¢ 0°2

AUYNAID0Yd XTHLVIN TVEDHELNI
INIOd L HLIM QINIVLIFO SNOLLNTIOS

20

00°1 = B0 ‘qLv1d LV1d V NO
HAX VT AUVANNOL ATAISSTHdINOINI

| | | |

pe1= Ho ‘(661°0-

LV NOLLVYVdES ‘81°0- = @
‘NOLLVYVdHS HVAN) LNAIAVED FUNS
-SHYd ISHAAAY HLIM HIAVT AYV
-gNNO9d YVTINIS ATAISSTIJIINOINI
l [ l

70

[ | |

86°T =10 (80~ LV
JA0MOTd ‘LOL°0- = § ‘dd0MOTd
HVIN) ONIMOTE HLIM HIAVT XYV

-aNNOd HVIINIS HTdISSHIdINOONI

9°0

8°0

0°1

n/n ‘OLLVd ALIDOTIA

9

16




CIEC) M
e 0T XT= n Q\3> 0 ‘uor3ong pue BUTMOTY JURISUOD YITM sioleT
Azepunog a1qrssoadwooul 103 Isqumu sploulsy yats Hp 3o uoT3eTIRA

Isqunu spiouleoy

*Z ®anbtg

0T 0T 0T g0T 0T
0
¥°0
uoT3ons
.IMMMHWGOU
‘I[ wto
soeyins e
ISJSURI]} SSBW ON \\\\\l|\\||l||
(4
L~
\ 9°1
\\\WQHBOHQ
JURISUOD aanpeooxd xTijew Teibojut
jutod-/ Y3TM POUTE}qO SUOTINTOS
_ Lt i _ ] [ 0°2

17




Transformation of the independent variables s and y into the Levy-
Lees variables £ and n is conveniently accomplished through the use of

the operator

3 3 2 ar 3 £ d3f | 3
PUFE * VI T PPe% Me'o [f' L (33 +'3_§)3_n:| (37)
In addition, the partial derivatives are given by
a) an |3 anl [2 )
=-— p UM T — + — (38)
ds y e e e o 3¢ n 9s y an g
A
3 UeTo P 3
(ay s (25)1/5 (aﬂ g ( )
where
(g—g) = (9_) -0 :iili (a_) (40)
=l_ T = —|_
n 3¢ - H 4g an £
a) . L L) (41)
(an)§ °n Bﬁ £

Equations (37) through (41) are derived in Appendix B.

Utilization of Egs. (37) through (41l) results in the following trans-
formed equations for diffusive fluxes and conservation of momentum, elemental
species, and energy in a laminar compressible nonsimilar boundary layer with
mass addition, chemical reactions, and unequal diffusion and thermal diffu-
sion coefficients (using the approximations embodied in Egs. (19) and (26)).
These equations are derived in Appendix B. Throughout the remainder of
this document the bar is dropped from £, m and the prime refers to partial
differentiation with respect to 7 except when noted otherwise:

Diffusive flux of ith species

Ji = a*Ji* (42)

where ji* is a normalized diffusive flux of species i

o]
aHSc

(20 + (2, - xpug] (43)
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a* is the normalizing parameter defined by

4

a* PeleleTo (44)
(28)/2
C is defined by
c = Eﬂﬁ— (45)
e"e
and Sc is a system property defined by
_ WM
Sc = L1 (46)

The Sc is a Schmidt number based on the self diffusion coefficient for a
ficticious species representative of the system as a whole,

Diffusive flux of kth elemental species

Je = ek (47)

where jk* is a normalized diffusive flux of element k

It o= - q__ [Z£ + (Ek - Ek)u4] (48)

aHSc

Diffusive heat flux

q, = a*q* (49)

where qa* is a normalized diffusive heat flux

1EN 2 T m
. c f' £ ug CE? . ctRT L Ei
R T Ty = T Ter |° I3 5 Ty
H Oy - J
¢ - c,®’R
=-C (2, 4 B +:%: R - (C + & ) T
B aHa © Pr Sc P H1H2
v '
+ cRMug + (h = h + ¢, R )u )} (50)
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and Pr is the Prandtl number based on the frozen specific heat

C u
Pr = —%— (51)
Streamwise momentum equation
' 2
ct® 25ay 3P , n Py
ff" + T - — _—5__ P a_?é—
H pu ® H
e
n Y
v pra, | [T e f p dy - Bf'?
H ag a (25)1/2
Yy
d Zn a
= af Qf  _ ga _____H
'Z{f'azng " sme -t TunE (52)
where B is the streamwise pressure-gradient parameter
d £4n ug 53)
P =237 (
Normal momentum equation
u_(28)1/2 (£1)2
P! - ” = 0 (54)
“pTefo

In the present study it will be assumed that the pressure is constant across
the boundary layer. Equation (54) is therefore replaced by that statement,
and the partial derivatives of pressure in Eq. (52) can be changed to a total
derivative, Also, from the compressible Bernoulli equation, Eq. (52) be-~

comes

Streamwise momentum egquation (P = P(E) only)

cf* . 2 _p_G_ _ g2
£FYY 4 [aH :]+ B G,H ) f )
d £n a
df! 3 f 2 H
= 2(f'azn§ S me- ! T (55)
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Energy equation

1 - % *
fHT + [ qa + q, ]

n

B o f

ézng'Tazng (56)

2o

ivhere qa* is the normalized diffusive heat flux away from the surface given

by Eg. (50) and qg is the normalized radiant heat flux toward the surface

Q¥ = qfa* (57)
where a* 1is given by Eq. (44).

Elemental species equations

(] a’k,,(
X 1 — ' - 2 af
Ry + ['Jk*] togt = Z(f it R 3Ine (58)

where j,* 1is given by Eq. (48). The transformation also yields the follow-
ing relations between fw and PV (see Appendix B):

df
f + 28 =¥
w

e (59)

p.V = =~ a¥%
ww

where a* is the normalizing parameter defined by Eq. (44) or, equivalently

5 3
£, = - (25)’%f Lt (60)
o Peletefo

When certain groupings of parameters are constant so that the similarity
assumption is valid, the terms on the right-hand side of the conservation
equations (Egs. (52) or (55), (56) and (58)) vanish, in which case the con-
servation equations become ordinary differential equations. It should be
emphasized that the equations as presented herein are equivalent to the
corresponding boundary-layer equations presented in Section 2. That is,
no similarity assumptions have been made in their development.

Equations (44), (53), and (60) for a*, B, and fw' respectively, are
indeterminant at the stagnation point of a blunt body. Special forms for
these equations valid at the stagnation point are shown in Appendix C to be

given by
due
a* = ‘pe“e /P

—(pva/a*)O (60a)

!

(o]

(44a)

Hh
]
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where for Newtonian flow

B = L/(x+1) (53a)
and
du
&= | - (Zp/p)i/Reff
o
with Rogr an effective nose radius taking into account the shock shape.

Alternatively, Bo and (due/ds)O can be computed from curve fits of the in-

viscid pressure distribution.

In addition, in order to improve the accuracy of numerical integration
procedures in the nose region, § and fw can be computed by the following

relations
52”‘*-e 2K

1 ue rO an+2 (31a)

§ 2(n + 1) PeMe |5/ 1\ d(s )

o
i, SHH Lo
= 25 e b 60D
fw = - n + 1 J[ [pwvw s } d(s ) ( )
o

which take advantage of the fact that ue/s and ro/s vary more nearly
linearly in the stagnation region than do u, and r,- Equations (31a) and
(60b) are also derived in Appendix C. Of course, the original Equations (31)

and (60) are more applicable on the afterbody.

The surface boundary conditions can assume numerous forms. The simplest
of these are the requirement of zero slip at the surface which yields

£, =0 (61)

and assignment* of numerical values for PV (oxr fw), hw (oxr Tw), and Rkw'
In the event that PV is assigned, the fw can be calculated by use of Eq.
(60) . Alternatively, Eq. (61) can be utilized together with the assignment
of wall mass diffusive fluxes, jkw, and hw (oxr Tw) or with the assignment

*It 1is physically unrealistic in most cases to assign Ry when diffusion
coefficients are unequal since the contribution to Rk by preferential
diffusion of the various elements to the surface is not known a priori.
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of wall mass diffusive fluxes and the requirement that the surface material
either be in equilibrium with the gas adjacent to the surface or satisfy
surface reaction kinetic relations. (Surface chemistry considerations are
discussed in Ref. 7.)

Additional wall boundary conditions of interest admit the addition of
chemically active species arising from the pyrolysis of an internally decom~
posing material, surface combustion or phase change, and ligquid-layer removal.
In this case PV (and thus fw by means of Eq. (60)), f&, HTw and Rkw
are supplied through surface chemistry considerations, the zero slip condition

(Eq. (61)), an energy balance, and elemental mass balances.

The surface energy and elemental mass balances are supplied by transient
internal conduction solutions such as those described in Ref, 20. The proce-
dure for accomplishing this is discussed in Ref. 10. The resultant equation
for the surface energy balance is given by

... .. <.
m*h + m* - * 3 - ) *1 - * - O
g g mcnc Z_.mrznz \pwvw) nw q; *
2 w w

= v

—~~
[«
LS

~—

cond

where ﬁg is the mass flow rate per unit area and h the enthalpy of gas
which enters the boundary layer without phase change at_the surface (e.g.,

pyrolysis gases), ﬁg* is a normalized ﬁg given by ﬁg* = ﬁg/a* (typical),

ﬁc is the mass removal rate per unit area and hc the enthalpy of surface
material (e.g., char) removed by chemical reactions or phase change. m:z is

the mass removal rate per unit area and h, the enthalpy of that material which
is removed in the condensed phase (e.g., by melting with subsequent liquid run-
off or by mechanical spallation). hw is the enthalpy of the gas phase at the
wall, q¥% is the normalized diffusive heat flux away from the wall (Eq. (50)
evaluated“at the wall), dr,, is the net radiative flux to the wall (including
reradiation from the surface), and g = xw(aw/ay)w is conduction into
the surface material (with X, the thermal conductivity of the surface mate-

rial) . The elemental mass balanrces are given by

x ¢ g k

rﬁ;kg + maR - Zﬁl; ?Ek - (pwvw)*%"k - 3% = 0 (63)
1 2 w w

where the subscripts g, ¢, r and w and the asterisk have the same meaning
and ji is the normalized diffusive net mass flux of elemental species Kk

away frém the wall, given by Eq. (48) evaluated at the wall.

To illustrate a simplified special case for this surface boundary condi-

tion, consider the case of steady-state ablation of a homogeneous material
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such as carbon, neglecting mechanical spallation and radiation absorption
and emission with the exception of reradiation from the surface. 1In this
case m_ = 0, ﬁr = 0, ﬁc = pwvw'.qr = -oewT“f, kkc is unity for carbon and
cond = mc(}'{c - h_) where h =0 if the carbon is

initially at the base state of 298°K. Therefore Egs. (62) and (63) become

zero for nitroge%, and ¢

(p,v,) *h + q;w + oew'rw‘/a* = 0 (64)

for the energy balance and

(v )*® -1+ j& = 0
w
(65)

w
(P v ) ¥Ry + 3 = O
ww KNw Nw

for elemental species balances for carbon and nitrogen, respectively.* 1In
the absence of mechanical removal, equilibrium of the gas phase at the sur-
face can be satisfied by considering any one of the equilibrium relations,

for example

(1/3) 4n Pc3 -KP (Tw) = 0 (66)

w eq

where Pc3 is the partial pressure of C3 at the wall and K (Tw) is

w eq
the equilibrium constant for the reaction

c(s) — (1/3)c, (67)

Egs. (64) through (66) together with Eq. (61) comprise the complete set
of surface boundary conditions for this specific example of steady-state

carbon ablation.

*It is necessary to consider individual elemental species balances for only
one less than the number of elements (see footnote at bottom of page 27).
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Returning to the general problem, edge conditions of interest admit the

possibility of an entropy layer:

= o
fledge = %y {u (f,g)]
e
- ~ edge
> (68)
a[i o]
_ e
feage = wm\P @ ——
\ )
_ edge
HTedge - HTedge \
actual
(69)
H} = 0
Tedge
/
edge eage actual l
(70)
~, N
edge

where the subscript "e" refers to a reference condition, conveniently taken
as the f = 0 streamline (see Appendix D) and the subscript "edge" refers
to nedge chosen to be outside of the boundary layer but possibly in the
entropy layer. Wwhen there is no entropy layer, the reference condition e
can be considered as the edge condition, e = edge. In this case, Egs. (68)

simplify to:

fédge
(71)

[}
lo]

- 1
féhge = £

In the next section, the boundary-layer equations and boundary conditions
presented in this section are cast into a form suitable for numerical solution

by an integral matrix method.
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SECTION 4

THE LAMINAR BOUNDARY LAYER EQUATIONS
IN INTEGRAL MATRIX FORM

The solution of the transformed boundary layer equations presented in
Section 3 utilizes an integral matrix method which has been developed spe-~
cifically for the solution of chemically reacting, nonsimilar, coupled bound-
ary layers. 1In this procedure, the primary dependent variables f, HT' and
ik and their derivatives with respect to 1 are related by Taylor series
expansions such that f°', He., and ik are represented by connected cubics
with continuous first and second derivatives at the junction points (commonly
called a spline fit). Primarily for convenience, the conservation equations
are integrated using a weighting function which is unity between adjacent nodal
points and zero elsewhere. The linear Taylor series expansions together with
linear boundary conditions form a very sparse matrix which has to be inverted
only once for a given problem. The nonlinear boundary-layer equations and the
nonlinear boundary conditions are then linearized, the errors being driven to
zero using Newton-Raphson iteration.

In this section, the Taylor series expansions are presented. The bound-
ary-layer equations are integrated, and the integrals which appear are also
expanded in Taylor series. The resulting equations are precisely those which
have been programmed for solution on high-speed digital computers to repre-
sent a coupled chemically reacting boundary layer such as surrounds an ablating
heat shield during superorbital reentry. Special cases corresponding to a
nonreacting (homogeneous) boundary layer and to an incompressible boundary
layer are also discussed. The procedure utilized for solving the sets of lin-
ear and nonlinear algebraic equations developed in this section are presented
in Section 5.

Consider the boundary layer in the region of a given station 8 as being
divided into N-1 strips connected by N nodal points. These nodal points are
designated by u where 1 = 1 at the wall and i = N at the edge of the
boundary layer.

Consider a function p(x) which with all its derivatives is continuous
in the neighborhood of the point x = a. Then, for any value of x in this

neighborhood, p(x) may be expressed in a Taylor series expansion as

p(x) = pla) + BBl (x - a) 4+ A (x - g)°

+ -Biééél (x - a)°® + I:: 2 (x - a)* + ... (72)
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Considering the point a as u and the x as Nisl
: w 5n° e 87° v on?
Piy1 P; + Pifn + Pl -+ P G v P Gt e (73)
where
én = 'ﬂi_,,l - ni (74)

The p; can be considered to be any of fi, £, f;, f;', H

i H' , H”,’Rk_.
i i

T.,’ T.
1 h
R , or ﬁi'. To illustrate:
i i
f!

b m o g e g SR 7

6

Since the highest derivatives of the dependent variables which appear in the

L} o8 s s prpears = ~ . : 3 -
boundary-layer equations are f}‘¢¢, Hp! and K'i' it 1is reasonable to truncate

i
the series at the next highest derivative and to consider that derivative as
being constant between ny and Ni41 that is:
" - "
PTTTR  Walh
i7i+l &n
Hll - Hll
T. T.
HY' = _5__l+1n i > (76)
A

T - i+l 74
i%k, - on

i+l

J

The following set of [3 + 2(1 + K}J(N - 1) linear equations are thus obtained
where K is the number of elemental species minus one* and N is the number

of nodal points across the boundary layer:

3
felhod 02 n®
- fi+l + fi + fiéﬂ + f; >+ fi“ gt fi:l 54 0 (77)

*For example, if 4 elements C, H, 0, N are undgr consideration, K = 3.
Conservation of the remaining element is supplied through overall mass
balance.
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ey

: sn? s
- p;q t Pyt PO Py~ + Py & = O (78)
& v o bn
- Pl TRPLYPRY TP ° (79)

where in Egs. (78) and (79) the p; represents f!, represents Hyp , and
~ l
represents each of the K Ky .
1

Thus, between each 1 and i+l the f is represented as a quartic:
the f', H, and ik are represented as cubics; and théw £'', Hy and ii are
represented as quadratics; whereas the f''', Hé‘ and Ky' are considered to
vary linearly and the £'''', HE' and Kﬁ' are considered to be constants be-
tween each pair of n-stations. Of course, all of these functions with the
exception of f£'''', H%' and Rﬁ“ join continuously at the nodal points.
Herein lies one of the major distinguishing features of integral methods in
general and of ‘the integral matrix method in particular. Conventional finite
difference methods are generally based on a representation which is not too
unlike the first term in a Taylor series expansion and thus yield discontinu-
ous functions. Integral methods generally use smoother functions and hence
can be made to yield comparable accuracy with far fewer nodal points. This
is extremely important for a chemically reacting boundary layer since the
state of the gas (the computation of which is not trivial) must be determined
at each nodal point during each iteration. 1In the past (e.g., Ref.3) inte-
gral methods have employed high-order polynomials from the wall to the

boundary-layer edge to obtain smooth profiles for f£f', H and Ek‘ The

T
cubic spline functions employed herein are believed preferable as they are

usually better behaved.

The momentum, energy, and elemental species equations are integrated
at constant £ Dbetween Ni-1 and ny to yield:

Momentum equation:

i i i i
j ££" dn + I:———Cf":l + Bazf —< dn - B f £'%dn
a H p
H . .
1 i-1

i-1 i-1 i-

d £Zn a
,af'__ w 8f - 2 H
e f azng)d” 2] £ ggn g 9n (80
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Energy equation:

i-1

i . i

i dH df

' _ _ T = |dn (81)

I fHTd‘n+|:q’a"+q;] _2f (f'——azng-H,i,Bllng
i-1 i-1

Elemental species equations:

i

o ik . . ) 3
f ﬂ‘kd”‘[JiJ *“Hf B o= 2 ) A s amE c Ry mE |9
i-1 i-1 i-1 i-1

(82)

This, in effect, is a square-wave weighting factor of unity between i-1 and
i and zero elsewhere, This is equivalent to the step-function weighting fac-
tor used by Pallonei3 As discussed in Appendix F, the primary advantage of
this type of integration is algebraic simplicity, the complex terms in the
energy and elemental species equations (the q;, qg, and jﬁ) being divergence
terms. The use of smoother weighting functions, such as those utilized by
Dorodnitsyn? would add considerable algebraic complexity and do not appear
warranted on the basis of studies described in Appendix F which indicated
that square-wave weighting functions and Dirac delta functions (i.e., a dif-
ferential approach) yield comparable results as long as equivalent smooth

functions are used to relate the primary variables to their derivatives.

The integral of fp', where p is f£', Hj, or kk' can be expressed

i . i
f £p' dn = [f p:l - f £'p dn (83)
i-1 i

as

The integral of f'p can then be expressed by expanding in a Taylor series
about i
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h
=
Fh
o
o
=
1
h
]
o
1
-
o
+
Hh
g
o
N

3
t " " 1 1" 6
vEL Py * 25 Pt £ Ry) 37

4
[ "t " " " !
- (£ py' + 3] Py + 3£} py o+ £pupy) -

+

S
" e (38 " ' 6
(4fi pt 6fi P, + 4fi"'pi) £

6 7
e (21 tees " ) 1 o} 1
(lOfi P + 10fi pi) 6 + 20fi"'p§_" =7 + ...

(84)
where, consistent with the truncation of the Taylor series employed earlier,
all derivatives greater than f;" and p;' have been dropped. Utilizing
again Egs. (76) to eliminate p;‘, Eq. (84) becomes

1
d/- f pdn = fi XPl + fi XP2 + fi XP3 + fi_1 XP4 (85)
i-1
where
XP = 6 - [ .@ + " _“'_n_z. + [¥] ﬁﬁ
1 n{P; = Pi3 P{'" 78 Pili 23 \
P 2 2
= _gp2| L _ ¢ &1 llsn ko
XP, Tl 3 -Pi 3+ PI' T35t PiL1 30
o (86)
- <3P 1157 11577 56n°
XPy 1l g - P T35 * PI' Taz0 * Piii Soa
P, 2 2 /
= s i _ 81 56n° an-
X, 8n ( 72 - Pi 30 " PY Soa t Pi.17532

For the axial derivatives, logarithmic two- and three-point difference

relations are utilized, namely
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2 [g Zn 5} = 4, (), +d (), +dy(), , (87)
¢

where (), , vrefers to the previous streamwise station, and

2 2
4. = d. = - d, = 0 (88)
0 b1 1 2801 2
for two~point difference and
£8-1 * 482 £80-2
do =2 A A dl = - 2 Z 2
L74-1 £7£-2 £78-1 £2-1"2-2
> (89)
A
a = 92—t 4=l
2 28422 £-1%4-2
for three-point difference where typically
gb-1 = dnf, -4ng, . = £n (§,/8, ) (20)

The three-point difference relation is utilized unless a similar solution is
desired (in which case do = dl = d2 = 0) or unless the point in gquestion is
the first point after either (1) a similar solution or 2) a discontinuity
(e.g., where the body changes shape abruptly, or where mass injection is sud-
denly terminated).

Similar approaches have been utilized previously in finite difference
procedures, for example, by Smith et al5 and by i.eigh.6 Integral methods,
on the other hand, have generally integrated the boundary-layer equations in
the streamwise direction (e.q., Pallones). The present approach is considered
preferable since the streamwise derivative terms are generally small, and
hence are conveniently treated as forcing functions. This avoids the diffi-
culty sometimes experienced during integration when the streamwise step size
is too small (see Ref. 6).

Applying Eq. (87) to the streamwise derivative terms
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£' (4p P+ dyp, 5 *+4d; P, 5) dn

1}
—

i-1

i
f p' (g £+ d) £, 1 +d, £, 5) dn (91)
i-1

where again this relation applies for the three cases where p 1is equal to

£, dg and Ky . Utilizing Eq. (83) ‘yields

f'éR———p'%E—-g)dn = 2d0f. £' p dn

i i
* dz_j’ £ opyppdn+ dzj f,2Pdn
i-1 i-1
i
-|ldgfp+a £, p+d, fz_zpil (92)
i-1

Noting that each of the five integrals in Eq. (92) is of the same form as the

integral expanded in Eq. (84) by means of Taylor series
i

i
3p __ _ _, 3f o
2[ (f'azng P'3ncg |90 = dg P+ dy £, PHrdy f 5P
i-1 i-1

(equation continued on next page)
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r (equation continued from previous page)

1
+2d) (£] xp, + £ XP, + £ XPy + £, XP))

MR B P o] zp ,)

v ooy By 4Pl 2y + Pl zMy 4 opy ) 2y (93)
where
- - on sn® an®
zp, &M (ypl w, 3+ v, Xy ovp, O
Zp = =8n® &-Y‘p M+YP _]:L@_Ili+yp5ﬁi
2 = °°m 2 273 37120 4 30
r(94)
2p. = &m Py v, Alon o 1lsn® o ser?
3 = | g 2 120 3 420 4 504 |
YP 2
_ e 1 on 587 5
2Py on ( 22 ~ 230 % YP3504 " P4 253
with
YPy = d) pyg,s vy Py
YP, = 4y Ppg,i v 9P
(95)
YP3 = dy Ppy,; * 9 Pl
-— "
Py o= 4y Pyt 2 Pilo 0

and ZMl' ZM2, ZM3. and ZM4

tively, for the special case that p = f'.

are equal to 2Py, ZP,, ZP,, and Zp,, respec-
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Following the same procedure

T asnay hem, |t 9w,
cs— = ' (K]
2 Jr £! T int d0 + 2 fi XPl + fi XP2
i-1 H
+ fi" XP,y + fi:l XP4] (96)
p; = £}

where use has been made of the fact that the coordinate stretching parameter
Oy is a function of £§ only.

Finally, it is necessary to evaluate the integral of the density ratio
which appears in the momentum equation and the integral of the elemental
source term which appears in the elemental conservation equation.

Approximat-
ing pe/p as a cubic between i and i-1,

an exact integration of the result-
ing approximate integral yields

i p

P P PP} - a
o = (g gp(fefh Bl )ay (s7)
i Pia Pi i1
i-1
Similarly for the integral of ¢k
i 2
—_ 6 - L] -— [ ] 5
‘[ Bean = (o weo P-4 - |55 (98)
i-1 i i-1 i i-1

These approximations are not quite as good as the approximations for f£', HT
and ﬁk since continuity of derivatives is not guaranteed at the nodal points.
Utilizing Egs.

(83) through (98) the boundary-layer equations (Egs.
through (82)) become

(80)

Momentum:

i
CE' e (1+a) £44, £, . +4d, £
o 0 1 Foo1 F 92 f0

i-1

(equation continued on next page)
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(equation continued from previous page)

’
Pefi - PePi-1

Pi Pi-1

e e

p
+ B a% [ —

Pi  Pia

mi:l
12

13}
2 * £i'XP;3

H, ,
1 +8 +d. - ~ ) f! Xp, + £ Xp
i 1 i

(1R} - [ ] []
+ fi—l XP4] 2 {fi zpl + fi' ZP2 + fi' ZP3
p, = f!
1 1

+ fi:l zp4] = 0 (99)
Py = %

Energy:

i
[- q + qf + H ((1 +dg) £+ £ o +d, f‘_z)}
i-1

- (1 + 2d)) [fi XPy + £I' XP, + £ XPy + £1'') xp4] -
i~ Yr

i

- 1
[fi ZPy + £1'2ZP, + £I'' ZPy + £I') zp4] .

+ H'' ZP, + H" ZP ] = 0 (100)
, T, 4
i i i-1 p

- [
[HTi ZPl + HT ZP2 3 T

where g% and q¥ are given by Egs. (50) and (57), respectively.
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Elemental species:

1
[- iE o+ % [L+a) £+4; £ ) +d, fz_z)] -

5 , , 512
+ay |:(¢k. + by )Tn - (¢k. - k. 12]
i i-1 i i-1

- (1 + 24y l:f!l XPy + E}'XP, + £V XPy + £3) x‘p4] N
Pj = Ky

1 1
- [fi ZPl + f'i-zp2 + fi' ZP3 + fi:l ZP4] o,

[Kki Zp, + Kii zp, + Kﬁi ZP,y + Ki;-l ZP4] o ‘ = 0 (101)

where jﬁ is given by Eq. (48).

The boundary-layer equations (Egs. (99) through (101)) are applicable to
the problem of the nonsimilar chemically-reacting boundary layer with unequal
diffusion coefficients, thermal diffusion, entropy layer, radiation absorp-
tion and emission, and rate-controlled reactions, coupled point by point with
a charring ablator solution. In the absence of thermal diffusion St is set
equal to zero. When the diffusion coefficients are equal, ﬁk = kk' My = 1,

By =1y =m, 7 =nh, and Ep = Eé. When the boundary layer does not react chem-
ically, the elemental species equation is inconsequential. Finally, if the
boundary layer is incompressible or if Crocco relations are utilized only the

momentum eqguation is needed.

Before discussing the procedure for solving the equations developed in
this section, it is appropriate to discuss briefly the thermodynamic and
transport properties employed in the solution procedure. These subjects are
treated in considerably more detail in Refs. 7 and 9, respectively.

The state at each node is determined with a general purpose chemical
equilibrium subprogram of much the same form as those described in Refs. 21
and 22. State derivatives are determined by the same routine. Enthalpy and
specific heat values are obtained through accurate curve fits of JANAF or
other reliable thermochemical data.

In the present formulation, transport properties are determined as fol-

lows. The /.. and D.T
ij i

and (26), respectively. The D is given by

are calculated using the approximate Egs. (19)

36




T(T/M_ )%
2.628 x 1072 +1fl)*
POreere%

ol
il

(en® /sec) (102)

with T in °K, P in atmospheres, and o in A. The subscript "ref" refers
to a reference species (often Oy but conceivably fictional). D is thus the
self-diffusion coefficient of that species. The F, are determined by a

least-squares correlation of ﬁij'

The viscosity of the mixture is obtained from an approximate relation of

the Sutherland-Wassiljewa type13

b= Zufci (103)
i

where My is the viscosity of species i given by

_ 5
My = Ba.x P8y (104)
i1
and
RTW . ZE: X.
-1 - __.L _J_
Gti = 1 + 1.385 Pximi ﬁij (105)
j#1

with the 1.385 an empirical constant suggested by Buddenberg and wilke.23

The mixture thermal conductivity, A, is obtained as the sum of a mona-

tomic thermal conductivity and a contribution from internal degrees of freedom:

= lmono + xlnt (106)
Th mono . . -
e A is determined by a relation similar to that for u
mono _ mono
A = in @, (107)
i

mono

where Xl is the monatomic thermal conductivity of species i

mono _ 15 R_
AS = 3 m; Hy (108)
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and

R'[‘ui X.
@ Th = 1+ 1.065 x 1.385 5 ZE_L (109)
1 it L Tij
j#i
. . 24 int .
with the 1.065 being suggested by Mason and Saxena. The A is computed
using25
mono
. X, (hy = A, )
Xlnt - 2{: 11 xl (110)
= B, . Z—J—
i ii 3 ﬁij
where
A. - pmono 5 Tl c _ 3 R (111)
i i *Pii M Tp; T2
SECTION 5

SOLUTION OF THE BOUNDARY~LAYER EQUATIONS
IN INTEGRAL MATRIX FORM

The solution of the boundary-layer equations presented in Section 4 to-
gether with the boundary conditions such as those presented in Section 3 is
accomplished by Newton-Raphson iteration. In this section these equations
are put into a form suitable for solution by this procedure. The resulting
equations are then written in matrix form, and a method is presented for their
solution suitable for coupling with an internal conduction solution. The pro-
cedure attempts to minimize computational time and computer storage require-
ments,

In order to illustrate the Newton-Raphson method consider two simultane-

ous nonlinear algebraic equations

F(X,Y) = 0 G(X:Y) = 0 (112)

the solution for which is given by x = x, y = y. Dzfine X and Yy, as
the values of x and y for the mth iteration. The desired solution

f(x,y) can be expressed in a Taylor series expansion
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OF (x5¥p)

0 = F(x,y) = F(Xm’Ym) + (x - Xm) T EEEE—
_ dF(x_,y.)
+ (Y - Ym) ay_'_—m m + ...
B (113)
—_—— - aG(xm:Ym)
0 = (X, = Glx,y) + (X - x) 55—
/
— 3G(x_,Y, )
+ (y - ym) .a—i}& .

The Newton-Raphson method consists of replacing (x, y) by (xm+1’ ym+1) on the

right-hand-side of these expressions, neglecting nonlinear terms in Xv1 " *n
and Yor: ~ Yo This yields the set of recurrence formulas
AF(x_,Y ) 3F(x_,Y )
A —_— o m —mn 5
“m 3x M Aym dy F(xm’ym) \
(114)
3G(x_,vy.) 3G({x_,y )
m’‘m m’“m -
Axm X + Aym 3y G(xm’ym)
where
B 5 *pe1 T *n W T Yoey T Yn (115)

The Axm and Aym are the corrections to be added to X0 and Yy,» Yespec-
tively, to yield the values of the dependent variables for the m+1th itera-
tion. Here F(xm,ym) and G(xm,ym) are the values of the original functions
F(x, y) and G(x, y) evaluated for x = X, and y = Yy, As the corrections
approach zero, the F(xm,ym) and G(xm,ym) thus approach zero. Hence, it is
appropriate to look upon these as errors associated with the original Equations
(112). It is apparent that this procedure can be extended to an arbitrary num-
ber of functions and a corresponding number of primary variables.

For the purpose of the present problem, it has been found to be most con-
venient to consider the primary variables as the f., f;, f; s f;” » Hp o+ Hypoo
Hil, Eki’ ﬁii’ Eﬁi at each nodal station i, plus the Qye This amounts to i
total of (7 + 3K)N + 1 unknowns where N 1s the number of nodal points across
the boundary layer and K is one less than the number of elements present in

the boundary layer. The corresponding number of equations is provided as follows
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Equation numbers Number of equations

Taylor series expansions (77)-(79) (5 + 2K)(N - 1)
Boundary layer equations (99)-(101) (2 + K)(N - 1)
Boundary conditions (61)-(63) and
(68)-(70) or equiv. (7 + 3K)
The Gy constraint (34) 1
Total ) (7 + 3K) N + 1

It is thus necessary to specify the corrections of the other variables (such
as density, temperature, etc.) in terms of corrections of the primary variables.
The procedure for accomplishing this will be described later.

The Taylor series expansions are linear with respect to the primary vari-
ables as are several of the boundary conditions. The boundary layer equations
and the remainder of the boundary conditions are nonlinear. The Oy constraint
is linear but it must be considered together with the nonlinear equations in
order to avoid a singular matrix. The recurrence formulas representing the
linear equations will be presented first, after which recurrence formulas
appropriate to the nonlinear equations will be developed.

bPartial differentiation of the Taylor series expansions with respect to
the primary dependent variables in accordance with Equations (114) yields for
the mth iteration

_1) ' ége "
( l)_\fi+1 + (1)Afi + (én)Afi + > )Afi
3 3
& Apdt én wa = _
+ (—%—)Afi + (24 )Afi+l ERROR (116)
- e 2"+ Ayt = -
(-1)dpy 1 + (1) 8p, + (8m)dp, + ¢ 3)%p; + (Sgo)dpil ERROR (117)
' ' & " k! [} -
(—l)Api+l+ (1)Api + )Api + (3)5P; ., ERROR (118)
where as before P, represents fi,HTIi and Ky . Here Afi+l’ Afi, Afi, and

so on represent the respective corrections for f;, and so on, the

£, £.,
numbers in parentheses represent the partial deriiziive; of the Taylor series
expressions (Equations (77) through (79)) with respect to the primary variables;
and the ERRORS are obtained by evaluating the left-hand-sides of the appropriate
Equations (77) through (79) for the values of the variables obtained during the
mth iteration.

Similarly, the recurrence formulas for the linear boundary conditions

(Egs. (61), (69), and (70)) are given by
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AE! - ERROR = =~ (f') (119)
w wm
AHT - ERROR = = [HT - HT ] (120)
edge edge edge actuald m
AH - ERROR = - (H ) (121)
edge edge m
A?k = - ERROR - | K - K } (122)
edge [ edge edge actuald m
AR = - ERROR - (R ) (123)
edge edge
The recurrence formulas for the nonlinear boundary-layer equations
given by:
Momentum:

are

p!
n Sn i JICE B
Hp. 2 (1 + 73 pi)Api 6 0°%
i-1
2 [}
P ( 6n Pi- 8 P ;
i bn “i-1 ' e i
+ l - —= | 4p._ Ap!_ + Ba..bn 1+
Piy [ 3 044 i-1 6 i-1 H ' oy Pi_1
d,a + d.a
p! p. p! lH_ ZH_
+ %? Si i i-3 ) AQH -l1+8 + dO _( £ la £-2 %
Pi  Pi-1 Pi H
t 1 L] "
X [f{ AXPl + f; AXP2 + fi’ AXP3 + fillAXP4 + XPlAfi + XPZAfi
dlaﬂz—l + dzaﬂz-z
+ XP3Afi'” + XP4Af;:l - s
. f!
Pj i

H

[fiXPl

(equation continued on next page)

41




(equation continued from previous page)

+ fi'XP + fi” Xp

3 i-1""4

2 + £1'UXP ] AaH - 2 [ZPlAfi + ZPzAfr
14

1o 1 = -

+ ZP3Afi + ZP4Afi-l] - £ ERROR (124)
Py = %

where the ERROR is given by the left-hand-side of Egq. (99) evaluated for the

mth iteration.

Energy:

i

1fz-1 + dzfz-z )AHT + HT(l + do)Af}

1
{- Aq; + oF Aqr + [ (1 + do) f+ 4

i-1

- (1 + 2do) [fi AXPl + filAXPZ + f;' AXP3 + fi:l AXP4 + XPlAfi
1 [1X] X - 1 n 1
+ XPzAfi + XP3Afi + XP4Afi_l] _ [ZPlAfi + ZPzAfi + ZP3Afi
Py = Hp
1
[} - | n "
+ ZP4Afi_l] _ [ZPlAHT.+ ZP2AHT. + ZP3AHT' + ZP4AHT- ] .
p; = HT i i i i-1 pP; = fi

- ERROR (125)

where the ERROR 18 given by the left-hand-side of Eg. (100) evaluated for the

mth iteration and Aqg is given by

LELE 2 Yol [ C
_ C F'Ef''uy 1ac | af' | afv b ) ST [ ac L 2 Tt
A = s e—— = [ 4+ 2 -3 + = + + =
a o2 [¢] £ £ o a. Pr [e] = T
H H H c
p
My apr o ~ ciR
Tt t—— T{'-(c + )T'+ctRTu§+('}T-h
H aHSc P MyH o

(equation continued on next page)
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(equation continued from previous page)

N ciRT' AT TR -
_T'AC  + — A(p,luz) + CtRTH:'; (T + T + (h - h + ctRTu.3) ALJ.;}
(MM, 3
172
Au
AR - —3 , AT
+ My Ah Ah + ctRTu3 (“3 + T )] (126)

Elemental species:

[— Aji +

i

(1 +dy) £+ daf |+ dzfl_z) MK+ K (L + qp) Af}
i-1

_An Voo Al
6 (A¢k. b0y
i i-1

el
} 9 [ P * Py,
i i-1

[ed

L
+ ff'AXP

0 - J _TL - ] ]
P ¢ki—1) 3 } o (1 + 2d0) [fiAXPl + fi'Axp2

+ E]'NOXP, + XPAf] + XP,AfY' + XPAf]" + XP4Afi:1]

1"
[ZPlAfi + ZP Af; + ZP3Afi” + ZP4Afi_l]

2

+

Zp AR' + ZP_AK'' + ZP, AK! J = - ERROR (127)
285, 3%, L S

1

|
Hh
'—u-

where the ERROR is given by the left-hand-side of Eqg. (10l) evaluated for

the mth iteration and Aji is given by
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Aa ——
- __C¢ 0 _ lac - St asc
a3 = — [ 2 + (2 Kk)“4)( c T T " ZZ’)
a,.Sc H Sc
H
+ AZp + (% - Rk)A“a ¥ “&(Aﬁk - Azkﬂ (128)

Equations (124), (125), and (127) are reduced to linear equations in terms
of the corrections on the Erimary variab%is iAfi' Afi, and so on) by noting
that the variables C, p, C_, T, Pr, Sc, h, Cp, uluz. u3, MHar Qpr ﬁk' and
¢k evaluated at any point in the boundary layer can be considered as func-
tions of static enthalpy, static pressure, and elemental composition. With
the pressure assumed constant across the boundary layer, it follows that all
of the corrections on unprimed variables with the exception of Aq, can be

expressed as

20, 20, |
A )i = ZE: X AKkki + EEI—— Ahi (129)
kk KK

where from Egs. (9) and (36)

u® fi®
h, = H, -—=— — (130)
i Ti 2 aH
so that
uw fi® [ Af! ha
e’ 1 i H
Ah. = AH -— = - (131)
i Ti aH fi aH

The Aqri is more complicated in that it depends upon the Ai&kj and Ahj
at all nodal points j.

The n-derivatives of these variables (i.e., the primed quantities) can
likewise be expressed in terms of corrections on the primary variables as

follows

) > i E AR 0K, s
A - Ky —_—— + ———— Ah,
i k. ~ ~ k. | i
i d 9 i 9 dh,
Xk o ke ek e, T
) — aa ( ) . 32 ( )
+ h, 1 ~ i
1 L 3h aK AKkk + ahd Ahl
Xk Xk, i i
1
a( ), , \
4 E: g, o+ 3L g (132)
3K ki ahi i
kk Kkki




where

2l o1
\ uf. f.
hl = H' - __eal 1 (133)
i Oy
so that
wELE AE,  AfY Aa
Ah;=AH&‘ - =22 —f-ri"'—-n—fl —2——@H (134)
i a; i i H

Use is also made of the following which are obtained by differentiating

Equations (86):

o 2 2
= & '___Gn ' sn° 1" 1 "
bXPy nolApy =3 Bpy + g bpy g APy \
AXP_ = - § 2( Pi pp! + ALEE ppv oy 80T ppn )
P n 2 "3 °Pj 120 °“Pi 30 “Pi-1 -
1?2
(135)
axp. = a(ﬁ_MA- JLe? w562,
3 o 8 120 °“Pi 220 °“Pi 504 “Pi-1
Ap' 2 2 /
= 3 i _&n ' 56r " 8n "
bxe, &n ( 22 ~ 30 OPi t oz OPy * 357 MPig
The AZPi = AZP2 = AZP3 = AZP4 = 0 since ZPl, ZP2, ZP3, and ZP4 can be com-

puted before the iteration commences.
Substituting Egs. (126), (128), (129), (131), (132), (134), and (135)
into Egs. (124), (125), and (127), and collecting terms yields, neglecting

the off-~diagonal terms* arising from the Aqr, the following recurrence formu-

th

las for the momentum, energy, and K elemental species equations between

nodal points i and i-1:

clAfi + c Afi_l + ¢ Afi + c4Afi_l

2 3

" 1 [N} mni
+ CSAfi + CGAfi—l + c7Afi + csAfi_l

AH'  + c, ,AH}

AH + ¢, AH + cll Ti 1208p

9%, T 10,

+ C
i-1

(equation continued on following page)

*As mentioned previously, Aqri and bar;_q produce corrections Aikj,
AHTj' Af5 and AaHj at all boundary-layer nodal points j.

45




AH' + ¢, AHY  +C, 0 + ¢, ha
*epafiy * 14T, TC1sTR, T T16TTH;

* E: ( “kk1%k, cksz?kki_l * kk3bFik,

kk
~| ~ _ _
* CealRix, .t CasfK r OaetRE = ERROR (136)
i-1 i i-1
where the coefficients for the corrections Cps Cor orn differ in form for
th

the momentum, the energy, and the K elemental species equations and in gen-
eral yield different numerical results for each elemental species kk and

for each nodal position in the boundary layer i. The coefficients for the
corrections are listed in Tables I through III for the momentum equation, the

energy equation, and the K*?  elemental species equation, respectively.

In order to complete the set of equations, it is necessary to develop

the recurrence formulas for the «a constraint and for the nonlinear boundary

H
conditions. The Oy constraint (Eq. (34)) yields
Af! « cAf' = - ERROR = - (f' = cf') (137)
Ne Ne Ne Ne M

The boundary conditions at the boundary-layer edge are nonlinear when an
entropy layer is taken into account. In this case, Egs. (68) are applicable,
resulting in the following recurrence formulas:

—0flioe * [E— (f.é)] ta
edge Ye edge H

d[—ﬁ (f.g):]
e
+ O'H -df_——_ Afedge - - ERROR

edge

" | feage * % [3— ‘f'i)] (138)
e edge -
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TABLE I

CORRECTION
Afi : [(1 + do)f ] Afi_l H
1
' )
Ay [Al] LR MEL_ g
“n . 9__ " .
e+ [£] o, bl
H- 1
[N (BN
. [£" ac .
AHTi : [aH Eﬁ] T (Dz)%_ .2 AHTi_l'
P 3h
MH: D, [%%)i bHY
T; 3 i-1
AH'* ¢ O AHY :
Ty Ti1
o . f” ac ~ .
Kk, |0, 3% * )y _a M,
i H Kk i-1
% 2 R
Bt Py |5 ) MY 5
i Kiex 1=
~0 . A~II s
AKkki ° kg
ba,, ¢ [A ] + B ba :
Hl 4 1 4 Hi-l

= _ =& e
Al o® £f
H
2
i 2
A4 - .f_ & fl g_c... C
o2 | a2 h
H H

47

COEFFICIENTS FOR MOMENTUM EQUATION

_[(1 + do)f'] -

a1 +c
[ 1141 1
&)
-1 & + C
[aH i-1 2
C3
[f"ac]
-] = + (D,)
a.. oh 4’3 .
H -1 3p %
<}
D5 (Bh)i-l
0
"
- | £ 3¢ + (D))
1 ~ 4’3 )
H 3K, 3p =
i-1 P aKkk
o, |22 )
OKpy | i-1
0

i 3p  oh




TABLE I (continued)

u_z. £'D 3_0
}32 = —Z[Dle2+ZP -f'— 2 i”3 3h |i
Py i %m
B = - 2 [Dl XP3 + ZP3] .
dy%y 2u
B = - £-1 £=2 1 e wp 4 £%xp, 4+ £ XP, + £7', X
4 o2 i *F1 i “F2 i 3 i-1 XPq
H Py = %
-]
u
_e ¢! " 3p -
! [2fi DB(ah)i *E Dy g_il
H 3p oh

u
= —E " B—p '
¢ T l:fi—l Dg 13 )1 1t £ (D4)g_ - }
H 3p dh
2
u
= __& ¢ dp
<, 2 £,1 05 (a )1-1
H
c; = -2 [Dlxp4 + zp4:| g
Py i
C4 =
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TABLE I {(concluded)

3pdKyyye

L

%o
3pdh
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TABLE II

CORRECTION COEFFICIENTS FOR

(1 + d)H ]
[ agm]

Pids s | 4
L ap dh i 19
B0

B3ls |2

dp =
?K
i Kk |
Dals >
dp ~
>

L o]

0

M) % - _(1 + do)HT] -
Afi_l T - _Als] i1
X _—
-1 _A16] i1
Afi_l : C17
AH : [A ]
T, 18] 5,
My =Py s
i-1 3 © SR}, ,
AHII :
T, 1 20
&K HEE -( ) ]
kg Pi3la Lo
- 5= =
3
i Fiex |
Mg, [ yly 3
- S
3
L Fiek |
A~l' . 0
Feky o
Ac : - [A ]
Hiy 21J i1
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TABLE II (continued)
uy ,
= - —=I|f
A I

=D -l + 1l + £+
A, [13J L, TAraErag g rar
3p  °h

- g
(0, - a¥)

B15 = - [(l + 2d0) [XP1

—J
‘o
|
]
i
]
+
|
]
g
[
| N—
o
| S— |

B = - |(1+ 24 ) {XpP + | ZP
16 [ 0 I: 2] [ 2] ]

P;: ® H P; =H
1 Ti 1 T 5

B = (1+2d)[xp] +[ZP]
17 { 0 3 P: =H 3 p. =

i Ti i HTi]
Bla -_|:(1 + 2d0) [x l:l N + [zpl:l b = £

i

By = - l:(l + 2d.) [xpz] b - g + [zpz:l b, = f-:|

.
B, = - (1+2d)[xP] ,+[ZP3] ]
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TABLE II (continued)

:
1+ 20 [xe [22,] ]

i T. :
- i i

-

(1 + 2d,) [xp4] . [zp4] '
Py = £ p; = £

N ciR , , -
- {Cc_ + - !
P T T + ctR T My + (h h + ctR T u3)u4
W“w CTT D
C_ flfll__e_+ P +_-E + o*
H (1:1 Pr So
=) ra) [}
)_1__a_c_:+1_aqr+c T.EB__E.'I_‘_.LM'.
(Dl2 qr C 3p a* 3dp aHPr 3p Pr P

C [ ' 3 R 3 - !
— [(“4“3 THg)e R Soh My Fp T SR T 55 - T 55

H
e 2 ¢
D11 8¢ | SR T' 3(ugMy) c__
- =35t 3 T | &8¢ M4
Sc P (uu,)® °P oy s 3
33 = 3% only
—_ 2
o B | T w5
a Pr - | I VIT) K
H aHSc 172 kkk 3 aKkkk

3% 3%n

fo) ~ = 4 4

+ (F-h+cRTo) Z Kkkk(——a = )*h(apah
aHSc kkk P kkk
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TABLE II (Concluded)

[-]9} o
C = T c [_ 3 ~ 4
D = = (o} + c,RT ==+ (h - h + R —
14 ayPr P 3p o 5o L t 3p ( R T “3) 3p
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Afy s [(1 + do)Kk:l .
Afi : A7] . + B7
L i
1" [ u2e ]
Afi : - . £ (DG)Q_
L H op
LI
Afi : B9

t -
o+ o]
1 i, 8

B

TABLE III
CORRECTION COEFFICIENTS FOR Kth ELEMENTAIL SPECIES EQUATION

BE, .t - [(1 + dg)k ]
i-1 %]y,
Afi_1 T - [A7] ) + c7
i-1
(Y ua '
Afi‘-l HEE a—3 £ (D6)a - 3
P sh
BEY' g
AH, P [D :| +C
Y 71,8 Lo 10
3p dh
AR : - [D ]
Ti1 6141, _a_
dp dh
3o,
6nZ ( X
t oy 127 \3R | i-1
AH : 0
Ti1
AR : - I:A :] +C
k) 1], "
a [9¢
AK' s - [A ] + a ksl (—J&-
k. 12 H 12 -
i-1 i1 3K,
bRy, .3 C3
i-1
Aa : - [A ] + C
Hy 1], .7 "1
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TABLE III (continued)

2

e (X} '
Ay = -5 Dg + £D))5 3
H 3p
- - L]
All [07] , R + |:(1 + do)f + dlfz-l + dzfm_2 o2 u4}
=" H k = kk only
P 3K
kk
Mo = [2%]
12 6la .
5 =
3Ky
112 - -
“e ' " ' C 1 g '
Ay S Dg + £'0), _a’a‘a;z+(§k_zk)“4
H 3p Oh h
37 = [zp1 + (1 + 2do) xp1] - %k
: i
u? 3¢
- e b _ A X - 81
“H 7 (f' 3 fi') (ah )1 s 1 MPgli, 3 _a_
H P 3h
3 -
Ye 5n? _,
B8 - I:ZP2 + (1 + 2d0) XP2] L + G.H ;—2— 12 fl
Py = Kk, H

139 = - [ZP3 + (1 + 2d0) xp3:|

~

p; = Ky,

1

g
51 k 51
Bio ™ 32 “a‘h‘ Ji - % (Pg)y, a_=g__:|
op

dh
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11

12

13

14

TABLE III (continued)

[zp1 + (1 + 2d0) XPIJ

p; = fi, k = kk only
+amﬂ _M(D)
H 2 |3% 6 Pgli, 3 _ 3
K'kki ap_a~
Kex
3¢
- - [zp2 + (1 + 24y xpz:l - o, 30 [
p; = fi, k = kk only axkk i
= - |z +(1+2d)XP]
[ 3 0 3 p; = fi, k = kk only
= 32.&3 £1 £1 - 80 £n (th - 51 . (D)
TR U L B S S U R & E - - Y D W
H 3p ~ oh
M[ Y ) ]
+ ¢, + @ - |9 ¢ Sn
2 L7ky " TRy LRy ki 4] 8
u® 3¢
I I PO T (__k) on
- S Zl:fi-l+6 fia)iom Ji-i v e fian Pgdiy, 5 s
H 3p 3h
2
s g Ty, (_a_"k
= H > 12 fi-1|3W |i-1
H
= - [zp + (1 + 23,) xp ]
4 o) ¥y s
Py = Ky
1
3¢
- Sn )|k bn
G‘HZ[(ah )i-l+6 Ogli 1, 5 _ 3
3p _ oh
3¢
= % %? —* + %? (Dg) 3
aikk 87i-1, 2 _ 3
i-1 P oK,
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TABLE III (concluded)

- - ]
Ci3 = [ZP4+(1+2-:10) XP4J b = £1, X = Kk only
i i
c. = f“:i’lfl £1 .+ 80 g0 ﬂls + 81 & (D.)
147 272 fi-l i-1 773 Fi-1/{Fh fi-1 T 6 Fi-1 WPeli-1, 3 _ 2
H dp dh
3%, 3u
C 3 ~ 4
- =+ (7F - =
6 a—c[p 2 ~ Ky BpJ
H
- c l.?zli.p |+( - )n _]:_B_C_A._QS_C_!_
= Mg 3P Z + & - B e 5e
aHSc
\

kkk
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d[}j—e (f.g)]

- 1" L] .
Afedge * 13F (fedgeAaH + aHAfedge)
edge

@ [0
[] e _ _
+ aerdge g;;———————— Afedge = ERROR
edge
d [%(fig)]
1t ' e
- edge T %u | f mE (139)
edge| m

In the absence of an entropy layer, Egs. (71) yield the following recurrence
formulas:

n

Afé - A = = ERROR (140)

H - (£ -a

H)m

Afé‘ = - ERROR = - fé' (141)

Although Egs. (140) and (141) are linear, these boundary conditions are in-
cluded in the nonlinear set because of the possibility of an entropy layer.

As pointed out in Section 3, the wall boundary conditions can assume a
variety of forms. When the boundary layer is coupled to a transient charring
ablation solution, there are a total of K + 2 nonlinear wall boundary con-
PwVw (and thus fw by means of Eq. (60)),
HTw and K ikw' Therefore, although some of these boundary conditions
become linear for simpler problems, they also must be considered as nonlinear

ditions supplying, in effect,

for the general solution procedure. -Solution for the wall boundary conditions
for the fully coupled problem are discussed in Ref. 10. The wall conditions
for two simpler problems are described herein.

In the case that the surface conditions are assigned a priori, these
boundary conditions become particularly simple. For example, if PV’
HTw and Ekw are assigned, the following recurrence formulas result:
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3P v,)*
S Afw = = ERROR = =~ (pwvw)* - (pwvw)* (142)
w actual m
AHTW = - ERROR = -" HTW - HTw (143)
L actual n
A’Rk = - ERROR = -~ ik - 'k‘k (144)
w w Y |actual
where from Egs. (59) and (87) it follows that
d(p v )*
—__ww_ - . 1+ 4d,) (145)
afw 0

To illustrate a more complicated situation, consider the case of steady-
state ablation of carbon. The appropriate wall boundary conditions (given by
Egs. (64) through (66)) yield the following recurrence formulas:

3(p v )* o€,
(pwyw)* AHT + HT SF—— Afw + Aq; + oF Tw ATw = - ERROR (146)
w woow w
( Y* AK (R 1) (o) £+ AjE RROR
p v I* R, + (K, - of + Aj* = - E
W W CW CW afw w Cw
> (147)
d(p. v )* .
2 ~ W W Af + Aj* = - ERROR
(pwvw)* AKN + KN of w Nw
w w oW
/
aKp (T;) .
3 aten Po ) - 3—L— 4T, = - ERROR . (148)
3 w

w

where the ERRORS are given by the left-hand-sides of Egs. (64) through (66),
respectively, evaluated for the mth iteration, the a(pwvw)*/afw is given
by Eq. (145), the Aqgw and Ajﬁw are given by Egs. (126) and (128), respec-
tively, evaluated at the wall, and the AT, and A(4n PC3 ) are reduced to
the primary variables by use of Eq. (129). v

In many problems it has not been necessary to consider all of the terms
in all of the coefficients in the recurrence formulas. The retention of the
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major terms has been seen generally to improve convergence and thereby reduce
the number of iterations. However, overall computational time and storage
requirements can be improved by dropping the lesser important terms. At pres-
ent, the terms involving second derivatives and some of the lesser important
terms involving first derivatives are excluded. Of course, the dismissal of
terms from the recurrence formulas does not affect the accuracy of the final
result as long as the ERRORS are evaluated precisely; rather, the errors are

driven to zero along different paths.

The coefficients for the recurrence formulas for the Taylor series ex-
pansions (Egs. (116) through (118)), the linear boundary conditions (Egs.
(119) through (123)), the ay constraint (Eq. (137)), the nonlinear edge
boundary conditions (Egs. (138) and (139)), and the boundary-layer equations
(Egs. (136)) evaluated for the mth iteration form a non-square matrix EA]
with I = (7 + 3K)(N - 1) + 6 + 2K rows (the number of equations, excluding
the nonlinear surface boundary conditions) and J = (7 + 3K)N + 1 columns

(the number of correction variables). This matrix equation is given by

(2] [ - -[+]

IxJ J I
where Avj represents the correction on the jth primary variable (Afl,
Afz,..., Afi, etc.) and Ei represents the error associated with the ith
eguation.

This matrix can be reduced such that all corrections are expressible in
terms of Afw, AHTW and the A?kw. This approach makes it convenient to
treat varied and complex surface boundary conditions. Any consistent set of
surface boundary conditions can be added as an option with a minimum of pro-
gram modification. The primary reason for this approach, however, was to im-
prove the numerical stability if the boundary layer were to be iteratively
coupled to a transient charring ablation solution procedure, by relegating the
highly nonlinear surface boundary conditions to a subsidiary iteration with
the charring ablation solution. The influence of the boundary layer would be
contained in the reduced coefficients of the Afw, 0Hp and Aﬁkw somewhat

analogous to convective transfer coefficients.

The matrix [A] is quite sparse (i.e., it contains many zeros) in an
orderly way. Substantial savings in computation time and storage allocations
can be realized if full advantage is taken of this ordered sparseness. This

is extremely important since the solution of a boundary layer with several
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elemental species would otherwise be very costly. For this reason, the matrix

solution procedure will be discussed in some detail.

The first step in the matrix solution is to divide the equations into
linear (symbol L) and nonlinear (symbol NL) sets, namely

—_

BL AVL EL

_________ = o | emmm (150)
BNL AVNL ENL

where for convenience the variables are also classified as "linear" and "non-
linear"”. The distribution into linear and nonlinear variables is somewhat
arbitrary, but care must be taken that the square matrix [AL] not be singular.
It has been found convenient to select the following linear corrections and

to arrange them in the order as listed: AVLF(AEZ. Af3, .es Afn, Af& AfY, ..,
Afr'1' Af‘:,‘, Afi‘ i e Af;"_l); AVLH(AH,i.'n, AHTZ, AHgpgs ..., OHp . AHM /\H:iaz,

: T3¢ Tw’

AETn); and K sets of AVLK(AKﬂn, 0Kk, OKky, oo, 0Kk, ARE 35 ST

AKin). The nonlinear corrections are conveniently arranged as follows: AVNLF
1" XX] " oy, "

bag, f . BEY., BENY AR, ..., MEN'Y); AVNLy (MHT, BHZ . OHT, .., AHE 1); and

K sets of AVNL, (AKy , 0K, BREY o nes 0Kk, - Here the nodal stations are
sequenced from 1 at the wall (subscript w) to n at the outer edge of the

boundary layer. The linear equations are conveniently sequenced as follows:

Lo (linear boundary conditions and Taylor series expansions for f and its first

and second derivatives); L., (linear boundary conditions and Taylor series ex-

H

pansions for H,, and Hi);and K sets of Ly (linear boundary conditions and Tay-

T
lor series expansions for ik and ?i). The nonlinear equations are sequenced as
follows: NLp (the momentum equation evaluated between each neighboring pair

of nodal stations together with the two nonlinear boundary conditions and

constraint); NL,, (the energy equation evaluated between each neighboring

a
pzir of nodal statigns); and K sets of NLK (each of the elemental species
equations evaluated between each neighboring pair of nodal stations). The
form of the resulting matrix equation is shown in Figure 3. Here, for exam-
ple,[ANLFH] and [BNLFH] are matrices representing the coefficients of the
corrections [AVLH] and [AVNLH], respectively, arising from the nonlinear set
of equations NLp with the corresponding errors given by the single column

matrix [ENLF] .

The first step in the matrix solution procedure is to invert the sub-
matrices [ALpp] and to form the matrix products [ALpp]’1 [BLpp] and [:P.I,pp]"l
[ELP] for p = F, H and K., The former products have to be done only for

th

p = F and H since the linear equations relating the k elemental species
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to its derivatives (LK) have the same form as the linear equations relating
total enthalpy and its derivatives (LH). Furthermore, this has to be done

only once for a given problem as the matrices [ALpp] and [BLpp] depend only
upon the boundary layer m-spacing which can remain fixed as a consequence of

the stretching parameter Ay

The linear corrections [AVL_ ] can then be expressed in terms of the non-
linear corrections [AVNLp] and the linear errors [ELp] as follows:

[AVLP] - ’[ALPP]

+ [ ALpp] - [-ELp ] (151)

- -~

where I =3N-2 and J =N+ 3 for p=F and I =2N and J =N for
p = Hor K with N the number of nodal points in the boundary layer. These
can be introduced into the nonlinear equations to yield the reduced problem:

['Bﬁ] [AVNL]J =[W:II (152)

IxJ

where I = (K+ 2)(N-1) +3, J= (K+ 2)N+ 3, and the coefficients in the
are given by '

matrix [BNL

m
-l
L. = L= . BL 153
BNLlJ BNLlJ E: ANL1,£+r [ALpp] [' pp] L s ( )

£=1 P ]

where p=F, m=3N-2andr =58 =0 for 1< 3j<(N+3);p=H m=2N,
r = 3N -2 and s
2NK and s =3 + N(K+ 1) for[{k + 1) N+ 4)< j<[IK + 2) N + 3] for the

choice of linear and nonlinear corrections listed earlier. The coefficients

U

in the [ENL] matrix are given by

m
-1
ENL, = - ENL; - Z Z ANL; 4.\ r [ALPP:I [-ELpp] , (154)
P =1

for p=F, Hand K with the m and r having the same values as in Eq.
(153) for each p.
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Each time a coefficient in one of the original nonlinear equations (i.e.,
an ANL;; or a BNLij) is formed, its contribution to [Eﬁf] and Eﬁﬁf] can
be computed. Thus, the rather large matrix [ANL] never has to be stored. 1In
fact, it is highly significant that the only major blocks of coefficients
which must be stored for the representation of all of the linear and nonlinear
equations and for their solution are [BLFF] which is 3N - 2 by N + 3,[BLHH]
which is 2N by N, and [BNL] which is [(K + 2)(N - 1) + 3] by [ (K + 2)N + 3]
where N is the number of nodal points and K 1is one less than the number
of elemental species. This should be contrasted with the size of the matrix

of the complete set of linear and nonlinear equations which is [(7 + 3K) N + 1]
square.

The matrix Eq. (142) is substantially reduced further as follows. First,
the columns are rearranged so that the nonlinear corrections can be divided
into two sets: AVNL, (Aag, AELY, AN, AEY', ..., AEN'Y, LHE, AHEL, ...,

"n Ll LR} 11
aHY A’}ka, Asz,..., ARy ) and AVNLy (Af, sHp and the A’Rkw). Eq. (152)

Tn— 1 n- W
can then be expressed as

P
2l
o

AVNL [ ENL ] (155)

where [BNLa] is a square matrix, being the coefficients of the I corrections
[avwL_], with I = (K+ 2)(N-1) +3 and J = (K + 2)N + 3. Utilizing the
same matrix reduction procedure employed previously (in going from Eg. (150)

to Eq. (152)), the [AVNLa] can be expressed in terms of the reduced set of

corrections [AVNLb] as

(o] - -[mm] " [mm] [

I IxI IxJd J
-1
+ [BNLa] [ENL] (156)
IxI I

where I = (K+ 2)(N-1) +3 and J =K + 2.

The reduced set of nonlinear corrections [AVNLb](AfW, AHp, and the Aka)
are obtained from a consideration of the nonlinear wall boundary conditions.
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Once these are determined, the remaining nonlinear corrections [AVNLa] are
obtained directly by use of Eq. (156). The linear corrections EAVLp] are

then calculated using Eq. (151). These linear and nonlinear corrections are
then added to the corresponding primary variables in accordance with Eq. (115),
thus completing the mth iteration. The magnitude of the errors are checked
and the procedure advances into the m+1th iteration if the absolute errors
exceed prescribed upper limits. If not, the iteration is completed for the

current value of the streamwise position £ and time t.

Recurrence formulas for nonlinear wall boundary conditions are given by
Eqs. (142) through (144) for assigned p v _, Hp  and ’ka, by Egs. (146)
through (148) for steady-state carbon ablation, or can be obtained from any
other consistent wall boundary condition. It is apparent that these equations
must be expressed in terms of the [AVNLb]. When p v (or fw), Ho (oxr T.),
and the ikw are assigned, the [AVNL, ] are given directly (e.g., Egs. (142)
through(144)). However, when fluxes are assigned or mass and/or energy bal-
ances are required, the Ajﬁw and/or Aqgw {given by Egs. {128) and (126},
respectively, evaluated at the wall) are functions of [AVL] and [AVNLa] as
well as [AVNLb]. That is

BFLUXL BFLUxi BFLUX
AFLUxi = Z -aVL_-_ AVLj + Z aVNLa' AVNL + Z VNLb VNLb (157)
3

]
3 3 ]

where FLUXi can be jﬁw and/or qgw and the summations are performed
over linear and nonlinear variables with nonzero coefficients. The [AVL]

and [AVNLa] can be eliminated from these relations by making use of Egs. (151)
and (156). For this purpose it is convenient to look upon Egs. (157) as
additional nonlinear equations in the matrix Eg. (150):

]
[Z}FLUX] = I:AF | BF:I AVL (157a)
] ——
I xJd | avmn

J

where I is the number of flux equations of concern, J = (7 + 3K)N + 1,
AFij = BFLU’Xi/aVLj and BFij = BFLUXi/bVNLj. First, Eq. (151) is utilized to
eliminate the [AVL] from Eg. (157), yielding the result

] =[], [orm] -[],

IXJ J
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where I is the number of flux equations, J = (K + 2)N + 3 (the number of
nonlinear variables), and the coefficients are given by

m
-1

BF,. = R AF,
BFlJ BFlJ Z i, 041 I:ALPp] [BLpp] (159)

2=1 £,j~s

m -1
EF, = - Z AR, 4oy [:ALPP] I:-ELpp] (160)

ho) 24=1 2

where the subscripts are the same as those defined after Egs. (153) and
(154) . Next, Eqg. (158) is rearranged as

l:AFLUx:l = [ﬁ EE" b] AVNL - [E_F] (1e1)

Equation (156) is then used to eliminate the [AVNLa] from Eq. (161), yielding

J

I:AFLUX]I = [;—FTbJI . I:AVNLb] - I:E_?I (162)

where I is the number of flux equations, J = K + 2, and the coefficients

are given by
m

— -1
BFb.- = BFb.. - BFa. [BNLa] [BNLb (163)
ij ij o1 i £
m -l
£F, = ¥F, - Z BF, | I:BNLa:l [ENL] (164)
L=1 2

with m = (K+ 2)(N - 1) + 3. For clarity, it can be seen that the matrix

Eq. (162) is equivalent to
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K\
A E: ak,kkAKkkw + bkAHTw + ckAfw + dk

— A]* =
w kk=1
(162a)

K

- * = K

Aqg Z A+l kk M kk F PryyfHp o+ ocp g 8E, + dpy
kk=1 w w /
th

where the coefficients are constants during the m iteration. Thus, cor-
rections in the wall fluxes have been reduced to linear functions of correc-
tions in wall state and total mass flux into the boundary layer (utilizing

Eq. (145) and noting that Hp = hy).
w

Equations (162) can be substituted into the recurrence formulas for the
energy and mass balances (e.g., Egs. (146) and (147)) for steady-state carbon
ablation. The resulting equations together with the additional recurrence
formula(s) for the nonlinear wall boundary conditions yield the following
matrix equation:

o] ] - 2],

where I =K + 2. The AVNLb are then determined by matrix inversion

o] <[] [°]

I Ix1I I

-1

It should be noted that the time required to invert this matrix is trivial.
— -1

The time-consuming inversion is that of [BNLa] , required for Egs. (156),

(163) and (164), which has the dimension (K + 2) (N - 1) + 3.

In this section the Newton-Raphson recurrence formulas for the linear
and nonlinear equations have been developed. An efficient method for solving
these equations has been outlined. The analysis is completed for the case of
a boundary layer coupled to steady-state mass and energy balances. The pro-
cedure utilized for coupling to a transient solution for internal conduction
is described in Ref., 10.
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SECTION 6

RESULTS FOR INCOMPRESSIBLE AND COMPRESSIBLE
SINGLE~-COMPONENT BOUNDARY LAYERS

The equations presented in Section 3 have been programmed in Fortran IV
utilizing the numerical procedure described in Sections 4 and 5. Solutions
have been compared to available results for several incompressible and com-
pressible single-component boundary-layer problems as tests of the accuracy
and convergence of the procedure. It has been seen that reasonably accurate
results can be obtained with as few as five nodal points (the wall, three
internal points, and the boundary-layer edge) and that three to four place
accuracy can generally be obtained with seven points, although about 1l points
have been required for some severe tests to obtain this level of accuracy.
Convergence has been consistently satisfactory, four or five iterations being
required for a starting solution and three iterations generally being adequate
for subsequent (downstream) solutions. Some typical convergence and accuracy
checks are presented in this section.

Typical convergence of a velocity profile in an incompressible similar
boundary layer with adverse pressure gradient is shown in Fig. 4 in terms of
the conventional* Levy-Lees transverse coordinate. Starting with an assumed
linear profile, the first iteration established the basic shape of the pro-
file, the second iteration brought the solution within two to three percent,
and the third iteration yielded results which were converged to three signi-
ficant figures and compared favorably with the tabulated results of Loit-
sianskii.26 '

validity checks for the nonsimilar incompressible boundary-layer problems
of uniform blowing and uniform suction on a flat plate are presented in Fig.5.
The wall shear function, fx, for these two cases is shown in Fig. 5(a) in terms
of the stream function at the wall, fw.** The solution of Lew and Fanucci27
is shown for comparison. Convergence required about three iterations at each
streamwise station. Profiles of velocity ratio, f', and shear function, f£'%
are presented in Figs. 5(b) and 5(c). It is of interest that both blowing and

*The normalizing parameter ay has been removed from n subsequent to the
calculations in the accuracy checks presented in this section.

*%¥Tt should be noted that fW is zero at the leading edge of the plate, in-
creasing with streamwise dimension for the case of suction and decreasing
with streamwise dimension for the case of blowing.
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Figure 4. Iteration History for a Similar Incompressible Boundary-
Layer Solution Near Separation (B = ~0.19, Separation
at -0.1988)
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suction results were efficiently obtained with the same 7 spacing, in spite
of a ten-fold variation in boundary-layer thickness, by the use of the coor-

dinate stretching parameter, introduced in Section 3.

Ay
The wall shear function for uniform blowing into an incompressible bound-
ary layer is presented in Fig. 6 as a function of streamwise distance for a
pressure of 1 atmosphere, temperature of 2000°R, and mass injection rate of
0.005 1b/sec ft®. Results are also shown for the case where blowing is ter-
minated at a streamwise position of 2 feet. It may be of interest to note
that the nonsimilar effect of upstream transpiration decays quite rapidly,

but that some influence persists for an appreciable distance downstream.

Velocity profiles, shear function profiles, and maps of enthalpy ratio
versus velocity ratio are presented in Fig. 7 for incompressible and compres-
sible similar boundary layers with Prandtl number of unity and various posi-
tive and negative pressure gradients and wall-to-edge enthalpy ratios. The
results compare favorably with those of Hartree28 and Cohen and Reshotko.29
These results were obtained with a 7-point nodal network. Two to five (gen-
erally three) iterations were required for each problem, where the previous

result was in each case employed as a first guess.

Calculations were made for several single-component compressible boundary
layers with variable properties corresponding to that of air at moderate tem-
peratures (A = T°+8%, Cc o« %19 |} « 970 zng Pr_ = 0.7) for various values
of B8, HTW/HTe' .
shear function, and temperatire are presented in Fig. 8 for P = 1 atm,

= o - _ 2
T, = 1200°R, HT /HT = 0.2 and B = 0 for several values of ue/ZHT .

gence was simil¥{r t& that obtained in the Cohen and Roshotko compgrisons.

and u, /2HT . As an example, profiles of velocity ratio,

Conver-

As an example of a nonsimilar compressible boundary-layer solution, re-
sults are compared in Fig. 9 to results obtained at the NASA Ames Research
Laboratory with the Smith and Clutter finite-difference procedure5 for the
problem of Mach 10.4 flow over a 7% degree cone with uniform injection down-
stream of the 0.1574 foot station. The wall shear is compared in Fig. 9(a)
whereas representative velocity profiles are compared in Fig. 9(b). The re-
sults agree to nearly four significant figures for the similar no-blowing
solution and the first few stations downstream of the point where mass injec-
tion is initiated. Further downstream, the results are still in reasonably
good agreement, considering the £~derivatives and possibly the fw and §
are computed somewhat differently by the two methods. The present results
were invariant with streamwise spacing. The effect of nodal distribution
across the boundary layer was not investigated. The effect of streamwise step
size on Smith and Clutter results was not available. The first solution re-

quired 4 iterations, whereas the downstream stations, including those near the
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zero wall-shear condition, required three iterations each. The entire solution
was generated in 45 seconds on the IBM 7094 computer, an order of magnitude
less than the results obtained with the Smith and Clutter procedure. The
stability of the present procedure is indicated by the fact that no difficulty

was incurred in obtaining solutions down to the zero-shear condition.

In order to gain some confidence in the ability of the solution procedure
to compute physical boundary-layer thickness, results were correlated with
experimental data reported by Watson et al30 for laminar shock interaction
over a flat surface. A velocity profile is presented in Fig. 10. The correla-
tion is good with the exception of values near the wall where it is reasonable

to expect some experimental error due to probe-shock interaction.

Results were obtained for a boundary layer in a ficticious gas with rap-
idly varying properties (e.g., Prandtl number variation from 0.6 to 10 across
the boundary layer) in order to study convergence in an extreme situation.

A converged solution was obtained in 7 iterations, starting with the usual,
uninspired, built-in first guesses.

The problem shown in Fig. 8 (where Mach number effects were investigated)
with moderately varying properties and the problem of rapidly varying proper-—
ties were repeated with various partial derivatives which are used in the
iteration process but do not appear in the boundary-layer equations (such as
3Pr/3h and 23C/3dh) set equal to zero. In the former case, the total number
of iterations was increased by two for the entire set of five solutions. 1In
the more severe case, 1l iterations were required (whereas 7 were required
previously). The final results, of course, were unaffected.

SECTION 7
SOME RESULTS FOR MULTICOMPONENT BOUNDARY LAYERS

To date no accuracy studies have been performed for multicomponent
chemically-reacting boundary-layer problems. However, convergence has con-
sistently been satisfactory. To illustrate, an iteration history is given in
Table IV for graphite ablation in air. In this problem, the ablation rate was
assigned and surface temperature was determined by a coupled mass balance
at the surface together with heterogeneous equilibrium. Considering that
the initial guesses for velocity ratio, total enthalpy, and elemental mass
fractions are built-in, linear profiles with respect to n, and that there
are no constraints on the size of the corrections, convergence such as that
shown in Table IV is highly encouraging. Furthermore, it is significant that
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this convergence has been obtained while ignoring all second derivatives and
some first derivatives in the iteration process.

TABLE 1V

CONVERGENCE FOR A TYPICAL GRAPHITE-IN-~AIR
ABLATION PROBLEM
(Assigned Ablation Rate, Surface Conditions
Determined by Coupled Mass Balance)

Maximum Relative Errors* In

Lteration WALl Enthalpy, tempgstie, MOTRtun Energy  Eiemental
Shear Btu/Lb °R Equation  Equation Equations
1 0.3135 -223.0 1992 1.0 3.7 0.31
2 0.1727 -804.0 1469 0.29 0.77 0.13
3 0.1628 -795,2 1478 0.10 0.53 0.025
4 0.1670 -794.2 1479 0.0064 0.0028 2.7 x 108
5 0.1670 -794.3 1479 6.9 x 10°¢ 1.9 x 10~2 1.3 x 10~®

*A relative error of 1 x 10™°® corresponds to nominal 4-place accuracy

Boundary-layer profiles of velocity ratio, temperature, and elemental
mass fractions are presented in Table V for an air boundary layer over a flat
plate with unequal diffusion coefficients for all species, with and without
thermal diffusion. Mole fractions are presented graphically in Fig. ll. For
assumed equal diffusion coefficients and in the absence of thermal diffusion,
the elemental mass fractions remain constant across the boundary layer at the
assigned edge values of 0.23 and 0.77 for oxygen and nitrogen, respectively.
Consideration of unequal diffusion coefficients for all species is thus seen
to have a substantial effect on elemental mass fractions. With unequal dif-
fusion, the elemental mass fraction of oxygen first decreases slightly and
then rises to a maximum value of 0,2723 at the wall. When thermal diffusion
is also taken into consideration, the elemental mass fraction at the wall is
decreased slightly to a wall value of 0.2709. These wall values of elemental
mass fractions necessary to maintain zero mass flux at the wall are analogous
to the adiabatic wall temperature for zero heat flux at the wall,
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TABLE V

AIR BOUNDARY LAYER OVER A FLAT PLATE
WITH UNEQUAL DIFFUSION COEFFICIENTS:

(P = 1 atm, H; = 5000 Btu/lb, T _ = 5000°R, s = 1 foot)

e
n Y. £t u/ug 'ﬁo Ky 7,°R
Thermal diffusion neglected
0 0 0 0.2723 0.7277 4000
0.584 . 00075 0.1889 0.2626 0.7374 5355
1.168 .00171 0.4044 0.2475 0.7525 6165
1.752 .00284 0.6148 0.2308 0.7692 6861
2.336 .00418 0.8000 0.2239 0.7761 7722
3.504 .00735 0.9699 0.2269 0.7731 8892
5.840 .01427 1.0000 0.2300 0.7700 9204
Thermal diffusion included
0 o] 0 0.2709 0.7291 4000
0.584 .00075 0.1887 0.2594 0.7406 5350
1.168 .00171 0.4040 0.2447 0.7553 6170
1.752 .00284 0.6145 0.2288 0.7712 6877
2,336 .00418 0.8000 0.2240 0.7760 7748
3.504 .00736 0.9700 0.2279 0.7721 8903
5.839 .01429 1.0000 0.2300 0.7700 9204

This effect could be significant in ablation problems since substantially
more oxygen is available at the wall for reaction. Therefore, it is pertinent
to investigate the cause of the observed behavior. As a consequence of the
lower dissociation temperature of 0, relative to N,, the oxygen is almost
completely dissociated into the relatively more mobile atomic oxygen at the
edge of the boundary layer, whereas the nitrogen is only slightly dissociated
(see Fig. 11). Moving from the boundary-layer edge toward the wall, the ni-
trogen recombines more readily than the oxygen. As a conseqguence, the gradi-
ent in the atomic nitrogen concentration, although small, is greater than
that for atomic oxygen until an m of 2.5 or so is reached. Thus there is
a small net flux of nitrogen inward from the boundary-layer edge with a con-
sequential small decrease in oxygen elemental composition. Closer to the
wall, substantial recombination of the oxygen occurs, producing a large gradi-
ent in atomic oxygen concentration and thus a flux of oxygen toward the wall.
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Thermal diffusion produces a small effect in the present problem since
temperature gradients are relatively small. Calculations performed at high
edge enthalpies have shown large thermal diffusion effects, as a consequence
of the larger temperature gradients, resulting in wall oxygen concentrations

below edge values.

Profiles of velocity ratio, temperature, shear function, and mole frac-
tions across a boundary layer into which a large quantity of Apollo heat-
shield material is being injected are presented in Fig. 12. These results
were obtained for an assigned surface temperature and assigned component
fluxes (ﬁg and ﬁc) and utilized a 30-component chemical model. A converged
solution was obtained in 7 iterations, starting with an air boundary-layer
solution with the same wall temperature and same edge conditions but with
no mass injection. The convergence histories of the wall shear function and
maximum relative errors are presented in Table VI. 1In this calculation, the

corrections in the elemental species equations were not allowed to exceed 0.30.

TABLE VI

CONVERGENCE FOR ABLATION OF THE APOLLO HEAT-SHIELD
MATERIAL INTO AIR
(Assigned Surface Temperature and Component Fluxes)

Maximum Relative Errors* In
Normalized Elemental
Iteration wall gongzgﬁ EEggiggh Species
Shear qu q Equations
First Guess .2007 - - -
1 .0883 0.26 0.1l6 0.30
2 .1343 0.19 0.42 0.30
3 .1016 0.095 0.38 0.23
4 .0995 0.069 0.21 0.11
5 .0987 1.4 x 1072 (.045 0.026
6 .0987 4,8 x 10°® 6.5 x 10~® |5.1 x 107%
7 .0987 2.6 x 107 [9.0 x 10~ |[7.5 x 10™*
*A relative error of 1 x 10™% coxresponds to nominal
4-place accuracy

The nonsimilar boundary layer around a sphere-cone reentry body with
water injection was studied to determine the injection rates required around
the body to maintain a uniform wall temperature of 5000°R. A l6~component
chemical model was employed in these calculations. The distribution of water
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injection rates and the distribution of velocity profiles around the body are
presented in Figs. 13(a) and (b), respectively. These solutions, which in-
cluded evaluation of edge conditions, a similar solution at the stagnation
point, and nonsimilar solutions at ten additional stations, were obtained in
approximately 2.5 minutes on an IBM 7094 computer. Approximately 60 percent
of this time was spent in the equilibrium chemistry subroutines. It is thus
pertinent to mention that the total computational time could be substantially
reduced by the use of a specialized chemical procedure for the particular sys-
tem of interest. Also, substantial time was spent in tape operation intro-
duced by the use of overlays.
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APPENDIX A

INTRODUCTION OF THE APPROXIMATION FOR MULTICOMPONENT
THERMAL DIFFUSION COEFFICIENTS INTO
-DIFFUSIVE FLUX RELATIONS

In this appendix the approximation for multicomponent thermal diffusion
coefficients is introduced into the expression for diffusive mass flux of
species i, diffusive mass flux of element k, and diffusive heat flux.

The diffusive flux of species i in a multicomponent gas incorporating
the bifurcation approximation for binary diffusion coefficients can be ex-

pressed as Eq. (23):
' pPDu, [32Z; 3 £nu, pd 40T
T T R T Ul N (A

when the diffusion factors, F;, are considered to be invariant with tempera-
ture. Introducing the approximation for multicomponent thermal diffusion co-
efficients (Eq. (26))

c, pDu
T t 2
Di ~ Ulm (Zi - Ki) (A-2)
into Eq. (A-1) yields
p_Du2 32, 3 4n u, 3 4n T
e 2 R A s T (A=3)
or, equivalently,
-~ ct
) pD|.‘12 azi 3 £n (uzT )
i = _u—l-ﬁ— 'BT"'(Zi-Ki)T_— (A-4)

which is the desired form for the diffusive flux of species i including the
approximation for unequal diffusion coefficients embodied in Eg. (26).
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Likewise, the diffusive mass flux of element k is given by

pﬁuz aﬁk 3 £nu, -
j, = (=S | Z - B 3 4n T
Ix = ulm [ay + (Zk Rk) dy + Dy Ay

where

~ T _ T
Dy ZakiDi

i
Substituting Eq. (A-2) into Eq. (A-6) produces

~T ctp-lilzi_‘ - )
D = wm ) Cwi BT K
i

or by the definitions of Egs. (16) and (25a)

~.T CePDH,

Dy = —Ezﬁ—‘ (Zk - ik)

The elemental diffusive flux.can thus be expressed as

c
- t
) pDu, [3Z 3 4n (u,T )
T T om l:_By_ + (B -K) g
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The diffusive heat flux can be written as

2
qa = - p(€M+ V) M

3y

+ (0 +pe By 2 4+ pe Xy h
Pep’ dy p, 3y ~ Ji| by - 8 (a-10)

where

;PR P
P O —— -
Ki ) (A-11)

Substituting for DiT and 'Bij’ the term S becomes

c R'm2 F F X
s = g E - K.
Hlm l l)

Replacing the mole fraction xj by WLKj/mj and utilizing the definition
= W(Ki/Fiuz, S Dbecomes

3 b
Ji_ 24 -
= K) (A-12)

3

< - c RTM, Z Z KiFy Fy mF _al (s - Ky ;. (a-13)
My My My (MF; i” Ky 3
i 3
Expanding
s - ctR'.Iﬁ.J.2 _Wl__ Z Z K.F. 3_1; _ Z Z K.F F:LJJ.
i 3j 1 J
. F.j. K.F. F.j.
_AZZFJ_-_JAI.,. ZZ ll_]ll} (A-14)
i 3 i 3
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The second and fourth terms are identical upon interchange of subscripts but
of opposite sign and hence cancel each other. Utilizing Lﬂm==§:Kj/W%
and the definition of My = E:xiFi' S Dbecomes

C,RTM [ u J. j.F,
_ t 1 g i_ 1 E i" 1 -
S = “1 I:W _ —mi _771 _mi :I (a-15)

i i

Rearranging

F,
1 - i ) (a-16)

Substituting Egs. (A-4) and (A-16) into Eq. (A-10), the expression for
diffusive heat flux becomes

3 (v /2) =, 3T
- p(eM + v) 3y + (A + peHCp)

q; = v
— ct
axi pr2 azi 3 4n (uzT )
+ p€D hi F + u—lm—' W + (Zi - Kl) —ay———'— X
i i
ctRT
* Py tam Wy o F) (A-17)

Now

N BKi B(Kihi) ) K EEE
iy Yy i dy

i i i
- _ar Z
- ay( thl) % chpl
i i
dh = 2T
= - C a0 A"'18
3y p 9y ( )




Utilizing this and eliminating all summations in favor of defined system
quantities yields the following result for a,

3 (u?/2)
9 = - (e:M + v) 3y + (A + pey p) ay
_ PDU, [ag c.°R 3
voe |2n g 2m, P2 e e 8} ar o gy 23
D \3y p 3y[ W7 y P MM, ¥y " dy
C
3 £n (u T )
+ (h-h+c RTu3) 3y (A-19)
where , = Zmixi/Fi, M3 = zzi/ml, Yz.h,, and o Zzlcpl
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APPENDIX B

DERIVATION OF THE TRANSFORMED NONSIMILAR
LAMINAR BOUNDARY-LAYER EQUATIONS

In this appendix, transformation relationships for the Levy-lLees trans-
formation, modified by the use of a stretching parameter, are developed and
applied to the expressions for diffusive fluxes and to the boundary-layer

conservation equations.

The desired independent variables £ and T are defined by Eq. (33)
€=¢ m =2 (B-1)

where q, is a function of ¢ only, and

H
S
¢ =j U pgher ds (B-2)
o]
rove F
n = ;J p dy (B-3)
(28) 2

In addition, £ is defined as Eq. (35)

N
= X -
f-fw=j i an (B-4)
o
from which it follows that £' = u/ue where the prime refers to partial

differentiation with respect to 17 .

The old partial derivatives can be expressed in terms of the new partials

by
d _ 2 d d ‘ d
= + (B=5)
Ey gg‘néy T“eslsly
d -2 d 3 d _
Sl % S &, 8, (3-6)
where
d
= 0 (B-7)
S,
%é = peue“'erzK (B-8)
d uergp
Kl ey o
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Furthermore

3 | - 2o El 4 2 a“
3, BE;S%T} aﬁgé_gn
d - 3 B L 31
e BEEB%Q aﬁgf’%e
where - -
a"=l
%,
gﬁ .. 1%
€ 1 %y a
SF
Sl =0
Sl
& oL
Me ©m
such that
d _ 3 7 gl
.- H-1EFE,
n n < 0 £
ai=_1_a_
Bﬁg_"_‘na‘ﬁg_

It is necessary to evaluate the operator D( ) given by

() = puddd+ ov L)

3s
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The global mass conservation equation (Eq. (3 )) can be integrated to yield

N ¥
Vo= Py - 27 %E (rz J’ pu dy) (B-19)
r
o o

Differentiating 1 for constant £, introducing f' , solving for

(25)% f' dn , and integrating yields the result:

. y
(25_)2j £ an = r’;j ou dy (B-20)
o)

o

Utilizing this and the definition of £ , Equation (B-19) can be written as

_ l Q r PN i~ \-] / 21\
V= eV . Ty L(u;) (f - fw’_] {B-21)

with Egs. (B-5) and (B-8), Eqg. (21) becomes

OV = pyVy = Pelitets SE [(2e)%(f S5 |- Eent & (B-22)
g y
Performing the differentiation
(f - £) as ,
PV = Py T peueuer’é[T&;gﬂ“ + (20" (%Z - )J -L et B (B-23)
ro Y
For convenience, define
%
u r daf
oV, = - Pelete’o fw + 2¢ EEE) (B-24)
(2¢)
Then
peue“er;ct) Bf} £! 5 %ﬂ
v=--—28220 |+ (2¢) - = (2§£) (B-25)
T Tt 3 ' iy
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Utilizing this, plus Equations (B-5) through (B-9)

ou %; + pv %;‘s = opeuzuerozn [f' %E - (%E + %g) %ﬁ’g] (B-26)

Yy

which is the desired form for the operator.

In accordance with Equation (B-24), the use of this operator requires
that fw be defined as

w

€ v d€
£, = - <ze)"f’j L (B-27)

A
u r
o] pe eue (o]

The diffusive flux of species i is given by Eq. (27)

_ PPy, azi . ) d4n (uz T ) a8
WToagm |y K ay (B-28)

Applying the transformation of Eq. (B-6) with the aid of Egs. (B-7) and (B-9)
yields

8
\ Peletelo ¢ , St
Jl = - —_— Zl +(Zi - Ki) in uzT (B_zg)

Ve Sc

where Sc is defined as ulum/psuz and the prime refers to differentiation
with respect to 1 . Utilizing Eq. (B-17):

K [}
Peletelo c ' St
j, = = Z. + (2. - K.) zn(u T (B-30)
i ’/2€ aH e i i i 2

vhere the prime now refers to differentiation with respect to n

The laminar form of the streamwise momentum equation is given by Eq. (5)

m#e g2 -
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Applying Egs. (B-26), (B-5), and (B-6) yields by direct substitution:

%
au uer uerg P du

2 2K , ou £ of
PPe Ye HeTg [f JS¢E _( 2T 3¢

(2¢)% y

(2€)
2% OB 3 dP
= PeleteTo IE T Eg v 3
{
(B=32)
Now u = f'u, where u, is a function of £ only *
au = af' = "
Sﬁ u, Eﬁ' = ug f -(B-33)
du
u _ ., e of!
Fé = f EE + ue gg- (B-34)
So that
2 e E T Te £+ of £
e 3 e T\ T T v S - (BT S e
X % !
u_r o) Lur o] u f" a a
- “eo e’ o e 2n 9P .
35_‘: } " felleheTo Of T S8l T (8-3%)

(2€)

where the prime denotes differentiation with respect to n . Multiplying by

2H

(2€)/ppeu M X2 yields:

du
(28)e® e - A . 3
ug Eé_ + (26)f -g-é— £ £ (2¢6) £ EE

9
: (2¢) 53
—Rk f") _.1251 o _ _______JJL__ p' (B-36)

R 3 2y

Ple ) PPele HeTo

*
Note that all properties evaluated at "e" are functions of £ only.
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du

Defining C = p“/pe“e and 3 = 2 5— EES yields
e

(2¢) 8

(CE")y + £f" - 3f£'2 - -(-2-5)-%1% -—X_pr = (2&)[:f' %g— - f":l

P) 2%
Pl PPele Hefo

The final term on the left-hand side of this equation involves gg' which
Yy

can be expressed with the aid of Eq. (B-8) as

%2 Y

= peueuerz" %-g‘y (B-38)

Therefore

wy 1 T 2 _ _(ﬁ)_ opP ’ d
(CE£") ' + £f 3f - [‘gg + P g%l y}
e

- (2&)[f' %-E—' - g{- f"] (B-39)

Introducing the additional transformation of Egs. (B-16) and (B-17)

1— (o] L f» + f 1_ fu - S l_ f|2
QH aa Cl2 aE
H H H

H
A 3-SR W SN [a_ - fypdyu
puZ |3 om aE B ST oy (D) J, y

J— da '
=2-€ 1_.fl a_..l_.fl) I]__H. .l—fl)
Oy &\ %y Oy g8 Ay
- da
S - S o s : S PO N WP (B-40)
SF %H GE af{

where the prime denotes differentiation with respect to ﬁ and use has been
made of the relation
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Yoy I'n u
= q ? = ay a-__ = e% f p dy (B-41)
€ OE| an(28)2 J)

Y

Y

Multiplying by 'afl and rearranging terms yields (noting that oy = aH(E)
only):

: ' F 42 - " y
£en + | EEL | 28 o o _ p' 4. 4% + p 2. To e a f'a
Q. 2 — [¢} = P aH _—_-;5 p y - B
H pug kag H df JF oy (2%) o y

' ,2 da
=2‘§[f'-:-_§—-f"§§-§—H- E-Eﬁ] (B-42)

which is Eq. (52) of this report.

The normal momentum equation is given by Eq. (7)

Ay

.Q._ru = 0 (B-43)
(o]

Applying Eq. (B-6) with the aid of Egs. (B-7) and (B-9) yields directly

n
uero P , uz _
—(2—_6;%—- p' - % =0 (B~44)

where the prime denotes differentiation with respect to n . Utilizing
Eq. (17) and f' = aHu/ue

. f-z(z'é);5
u, -

P - {B-45)

rrK
Ogtecto

where the prime refers to differentiation with respect to 7 . This is
Eq. {(54) of this report.

In the event that normal pressure gradient can be neglected, Eq. (B-45)

is replaced by P' = 0 and the compressible Bernoulli equation yields
dap du
=== -, u, == (B-46)
dae de
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Applying this to Eq. (B-42), the streamwise momentum equation becomes

Q

££0 +[£]+ s(al‘;& - f'z)
P

H
-2'6 £ _af_'. — fv if. - 2_2. .d_li_H. (B-47)
3€ E %y d&f

which is Eg. (55) of this report.

The laminar form of the energy equation is given by Eqg. (30)

o .
ma gt s A

+(R - h + ¢ _RTu,) 2 ﬁnlng + B-48)
-  Salak' oy qr (

Applying Egs. (B-6) and (B-26)

PPUgHeT o [f' gﬁel - (%E ¥ %E) H'T]

u u
efof e"of

2
= pou? £r£0 + a T
(26)% | (2¢) 7 [ e ]

pBuz - ~ CiR
+ h' - |cCc_+ T' + ¢, RT u;
P HyH, t 3

Ct ! .
U~2T qr (B-49)

where the prime denotes differentiation with respect to 7

+(h - h + ctRT H3)[%n

. Multiplying

2 2K .
by Zi/opeue HeT, and rearranging
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. cc, 1 c [- .~  CER ,
fH, + Cc u f'f" + + h' - |C_ + T' + ¢ RT
HT e P HiHo £ 3

+

] 5
~ c q_(2¢)
(h - h + ctRTu3) [:!,r{ WoT t‘)] 4 -

A
- u r
pe ep'e [o]

2¢ [f' g‘éﬂi - H} g—g] (B-50)

where Pr = Eé w/N and Sc = HyH m/pD W, - Applying Egs. (B-16) and (B-17)
and multiplying by Ay yields

' C cZr
' _C_ £'£" 2 _B [ 1 gl - o t [ '
fHT + GHE;i__ ug + Br T' + = (h (EP + “1“2)T + ctRTM3
\ [
- CHEY q (25
+ (h - h + ctRTu3) [Zn(uzT :l + =
' Peleler o
9 -~ da — 4
= 2{[}- —g: - gl _H HY - By §§ + H 1 %u f}
L “H dE SE Oy gF
d
-2 | Ty & (8-51)
ot o¢

where the prime denotes differentiation with respect to 7 . This is
Eq. (56) of this report.

The laminar form of the elemental species equation is given by Eq. (29)

c
OKy Ky 5 ) Puy 3% o o 5“‘(“2'1' t)
M3 My T E\ T | AR RISyt k(B2
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Applying Egs. (B-6) and (B-26)

* D 1
_ e P .'JDU'Z =, ~ —~ Ct
) (26)/21 (25())% u.l'iﬁ[zk + (2, - Kk)[“(u'zT ) ] :l + (B-53)

where the prime denotes differentiation with respect to 1n . Multiplying

by 2E/ppeuzueriK and rearranging yields

i - el Tl
= 2¢ [f' glg—k - ik %{-} (B-54)

Applying Egs. (B~16) and (B-17) and multiplying by Oy yields

H
X
+

14g5S

X ~— [Ek + 2z - ‘zk){"“(“zTCt”}}' *oag ey

R - da N — dgo

— k H ~ =~ Of iyt ki H

2Elf —= - f-(ﬂ_ ___) - R == 1A H f}
|: JF Uy aT Ky Ky oF Ky (

a ~ 1
= 2% |£ TKk' - Ky £ (B-55)
3T 3F

where the prime denotes differentiation with respect to ﬁ . This is Eq. (58)

of this report.
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APPENDIX C

SPECIAL STAGNATION POINT CONSIDERATIONS

In this appendix equations are developed which are applicable at the
stagnation point of blunt bodies for the calculation of the flux normalizing
parameter, a*, the streamwise pressure-gradient parameter, B, and the wall
stream function, fw.

The flux normalizing parameter, a*, is defined by Eq. (44) as

n

ur
pe“eeo

a* = (25 (c-1)

In order to compute the value of a* at the stagnation point, consider the
streamwise pressure-gradient parameter, B, defined by Eq. (53)

B o= 258 (c-2)
e

The transformed streamwise parameter, £, is defined by Eq. (31)

S

o]

Differentiating Eq. (C-3) and introducing the result into Egq. (C-2) yields

du
- £ e 1 -
B = 2 u_ds 2y (c-4)
e PeleHelo
Utilizing Eq. (C-1)
P, du
B = e e e (C—S)
(1*2 ds
Solving for a* yields the result
due 3
a* = |p, as—/ B (c-6)
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The due/dslo needed for evaluation of a* if Eq. (C-6) is to be em-
ployed can be obtained as follows if Newtonian flow is assumed in the vicin-

ity of the stagnation point. 1In the case of Newtonian flow,

= 2 _
Pe = P, cos 0 (c-7)
o
Near the stagnation point sin 0 = s/Reff where Reff is an effective nose
radius of the body. Hence
52
P, = P_|1- — (c-8)
eff

u
= e _
Po = P_+ pe 5 (c-9)
Equation (C-8) becomes
2
Pele s®
3 = Py = > (c-10)
eff
or
2P %
u, = —2 (c-11)
e Reff Pe

The density is nearly constant in the vicinity of the stagnation point.

Hence

du g
e

2P
—& -9
ds

p

N 1
o - Reff
In order to compute the stagnation-point B, consider the definition
of §& (Eg. (C-3)) in the form

(c-12)

[e]
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52 n+y ds

szn+2

—
28 + 2
o l

For Newtonian flow, comparison of Egs. (C-11) and (C~12) show that ue/s-»

2H4
He (—f ) } d(s?**2) (c-13)

due/ds in the vicinity of the stagnation point. In addition, ro/s-» 1
and PeMe is a constant. Hence

du
I S _e aut+2
Sss0 = W T3 PeMle G5 S (c-14)
Substituting into Eq. (C-4) yields
du_? 24
- 1 S e} (s - 1
Bo = %t 1 u, d ro) T ox o+ 1 (c-15)

Hence, B, is unity for planar blunt bodies and 1/2 for axisymmetric blunt
bodies for assumed Newtonian flow.

The wall stream function, fw' is defined by Egq. (60) as

-% PV di
£ = - (28) j (C-16)

w K.
eeeo

Differentiating Eq. (C-3) and introducing the result into Eq. (C-16) yields

_ =% (c~17)
£, = - (28) pwyw,rods
o
This can be written as
s %
- -% "
£, = (28) s"ds
fe)
ghHt .
- 1 +
= - (28) %J’ [-K—_T—l' PV ?O_) } as"™ (c-18)
o
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where again ro/s ~ 1 in the stagnation region. The integrand in Eq. (C-18)
is well-behaved, starting with a finite value at s = 0. However, at the
stagnation point, the value of the integral is zero and fw is indeterminant
since € = 0. Thus, it is necessary to develop a special relation for £ .
Applying l'Hospital's rule to Egq. (C-17}, ©

bV (26)

fw . = - ———TEET—————— (Cc-19)
ds
Differentiating Eq. (C-3) and introducing the result into Eq. (C-19)
3
£ =8,
w wur ntww
° PelleMeto
Introducing Eq. (C-1),
= = * -
fw . (pwvw/a )o (c-20)

In summary, Egs. (C-6), (C-12), (C-13) and (C-20) can be used to calculate,
respectively, the a¥*, due/ds, B and fw at the stagnation point of a
blunt body, and Egs. (C-13) and (C-18) are useful for evaluating the integrals
g and fw in the vicinity of the nose region.
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APPENDIX D

ALTERATION OF THE BOUNDARY-~-LAYER EQUATIONS TO ENABLE
CONSIDERATION OF GENERALIZED BOUNDARY-LAYER-EDGE CONDITIONS

In the conventional treatment of the hypersonic boundary layer, the
boundary-layer-edge conditions are obtained from an inviscid solution as
those conditions which exist on the "stagnation streamline" (i.e., that
streamline which crosses the shock wave such as to become the stagnation
point and wall streamline). This same procedure can still be utilized to
include boundary-layer-~displacement effects if a new body shape is consid-
ered according to the effective displacement of the flow due to the presence
of the boundary layer. However, when entropy layer or nonadiabatic flow-
field effects occur, this conventional approach is no longer adequate since
the edge boundary conditions become functions of the local stream function
as well as the streamwise coordinate., Hence, in these cases it is necessary
to normalize the dependent parameters of the boundary layer in such a fashion
that asymptotic solutions are achieved at the boundary-layer edge. A pro-
cedure for accomplishing this task is presented in this appendix.

The procedure used herein consists of normalizing the boundary-layer
equations with respect to the f = 0 streamline when performing the Levy-
Lees transformation described in Section 3 of this report. The equations
then remain unchanged except that in all equations the subscript "e"
is considered as this reference conditions, and "edge" as the actual edge
condition. For example, the definition of f' becomes

£1 = o % = g2 |u (D-1)
H Ue H uedge (ue

edge

where ug is the reference condition and u is now the boundary-layer-

_edge

edge condition at some arbitrarily chosen nedge' Conversely, the new edge
conditions are given by
u
Yedge u, Ue ¢ Pedge (pe) Pe (D-2)
edge edge

and so on, where u, s Pg

for the £ = 0 streamline, and (u/ue)

r Moo etc., are supplied by the inviscid solution

edge and_(p/pe)edge
by the inviscid solution, but as functions of & and £f. That is

are also supplied
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Ue = 9By Pe = () |pg (D-3)

and

-
= '.a— (glf)
e

£

.
u pe

e

= £ @, 0l-= (D-4)

n=nedge ’

edge edge

In order to illustrate this procedure, consider the following sketches
which represent typical profiles of (u/ue)edge' u/uedge

z in the presence of an entropy layer:

and f' at a given
£ for two selected values of T

edge -

l I

[ | gq) I
Sr-—am - A S

,ﬁ : [ " I
=} | i I
EE I < I
b - I
11 ||
3 4 3 4

nedge n n
Sketch (a) Sketch (b) Sketch (c¢)

In this example, the viscous effects are considered to be confined to an T
less than 3 so that both ﬁedge considered are out of the boundary layer but
in the entropy layer. In Sketch (a), the (u/ue)edge

with distance from the surface, as would be expected. Since uedge has dif-

is shown to increase

ferent values depending on the choice of _édge’ u/uedge profiles would dif-
fer accordingly, as shown in Sketch (b). The u/ue is, of course, indepen-
dent of _edge since u, is a given value for a given §; however, as

shown in Sketch (c¢), the f'/aH does not approach unity at the edge of the
boundary layer, and, in fact, depends on the value of 7

edge chosen to rep-
resent the edge of the boundary layer.

In the absence of an entropy layer or other such effect, uedge = ug and
f'/o.H does approach unity at the edge of the boundary layer as in the con-
ventional solutions. It is for this reason that the f = 0 streamline is a

convenient choice for the reference condition.
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APPENDIX E

ONE~-DIMENSIONAL RADIANT HEAT FLUX IN AN ABSORBING
BOUNDARY LAYER WITH ANGULAR-DEPENDENT INCIDENT RADIATION

In this Appendix an expression is derived for the net one-dimensional
radiant heat flux in the boundary layer normal to the surface, Qpr which is
needed in the energy equation (Egs. (8), (30) or (56)). The wall value,

Ay’ which appears in the surface energy balance (Eq. (62)) is also presented.
The multicomponent gas in the boundary layer is allowed to absorb diffusely
as well as to emit, but scattering is neglected. The wall is assumed to

emit spectrally and to reflect diffusely, but transmission of radiant energy
is neglected. The incident radiation at the boundary layer edge is allowed
to have an angular dependence to approximate intense radiation from the stag-
nation region of the inviscid flow field or from a nuclear explosion outside
of the boundary layer. The derived relations are an extension of the basic
relations of Goulard and Goulard (Egs. (17) and (18) of Ref. E-1l) to include
the specific boundary conditions described above. The present result also
reduces to that of Cess (Eg. (5) of Ref. E-2) if the radiation layer is con-
sidered to extend to infinity with no incident flux at this edge boundary

condition.

The one-dimensional approximation implies that the flow field extends
uniformly to infinity on planes which parallel the plane tangent to the sur-
face at the streamwise position of interest, but that properties may vary
from plane to plane. It also means that the net radiation transfer along a
ray which lies in one of these planes and passes over the streamwise posi-
tion of interest is constant but may differ from the value along a different
ray in the same plane and passing over the same streamwise location. Al-
though this approximation sounds crude at first exposure, it is probably
satisfactory for most boundary-layer applications, since the contribution to
d, depends upon the cosine of the angle between the radiant source and the
normal to the surface and decreases rapidly with distance. Use of the ap-
proximation affords great simplification in boundary-layer problems since
d, then depends only on the state of the boundary layer at the local stream-
wise station. On the basis of these considerations, the one-dimensional
approximation has been used extensively in boundary-layer studies and seems

appropriate for use in the present study.

Absorption has been shown to be important at high reentry velocities
(above 45,000 feet per second) in an air boundary layer (e.g., Ref. E-3).
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Furthermore, it can be significant at much lower velocities when foreign spe-
cies are injected by ablation of the surface material. Hence, for generality,
it is necessary to consider absorption as well as emission. The neglect of

scattering, on the other hand, is a good assumption under reentry conditions

as long as solid particles or droplets are not present in the flow field.E_2

For local thermodynamic equilibrium, the equation of radiative transfer

can be expressed asE~1

1 91,
pn\) ds

= I, - Bv(T) (E-1)

where p 1is the density, %, is the absorption coefficient for the multi-
component gas, Iv is the specific intensity, and BV(T) is Planck's func-

tion defined by

2h v
-;_2- (e v/KT - 1) (&-2)

B,, (T)

where h is Planck's constant, ¢ is the velocity of light, v is the fre-
guency, k 1is Boltzmann's constant, and T is temperature. The flux of
radiative energy across the surface do in the frequency interval dv is
obtained by integrating I, cosfdw over all solid angles dw = sinfdfdp

T 2n

q, =ff IV(G,cp)cosesinGdcpdG (E-3)
v

0~0

where € 1is the angle between E:! (the normal to the surface do) and 7
(the direction of incident radiation) and ¢ is the angle between a refer-
ence line in the do plane and the trace of 7 on the do plane (see

sketch) . -

trace of 7

], “.y—%_ on do plane
| gy

N
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In order to allow the incident flux at the edge of the boundary layer to be
a function of ¢ and 6 it is expedient to consider the radiant flux in
the angular interval 49, qrv,O’ obtained by differentiating Eq. (E-~3) with
respect to 0O,

It is also convenient for the purpose of evaluating boundary conditions
to split the net flux qrvhg into the contribution q;v'e in the direction
of the normal unit vector n and the contribution q;v'e in the opposite
direction. Then

v, 0

+ -
q = q - q (E-4)
rv,@ rv,G rv,G
where
2m
q+ = Iv(e,m) cos6sinbdyp 0< 6 </ )
rv,e
0
> (E-5)
2
q; = ijr I,(68,9) cosbsinddy n/2 <06 <m
(0]

Substituting Egs. (E-5) into Eq. (E-1) and multiplying by 2nsinf yields

dqt a
-1 __EQLQ 1 _£2¢§._ 2nsindB (T) 0 <6 <mn/2
pr, de cosf cos6 v
(E-6)
dq, a,
_l —r_\il_e_l = i’.& 2nrsinfB (T) /2 2] ¥
px,, de cos6 " cosg§ ~ <mSindh, m/e <o <

Considering the sign convention of the following sketch such that the heat

boundary~-layer edge

wall
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flux toward the surface is positive

dy = - cosfdz (BE-7)

Equations (E-6) can then be written

+ +
dq q
1 ty,e v,e _ 2nsinoB. (T) o <o
pr,, dy cosd TSInUB,, <6< n/2
(E-8)
dq qay
X r
1 v, 0 _ v,0 _ . J
E;: ay cosd = 2n51n6Bv(T) /2 <6 <
Defining an optical thickness Ty
Y
Ty EI pn, dy (E-9)
0
Equations (E-8) become
+ +
dg q
Iy,6 erG \
ar, cost - 2msin6B (T) 0« 6 < m/2
(E-10)
da- -
qrv,e qrv,e PrSindB J2< o
ar, ~ cos6 Tsin v(T) n/2< 6 <m
Solution of Egs. (E-10) yields
T T
v v
qf eTt/cost = - 2n| B, (Msinse”t/%%¢ 0<6 <m/2  (E-11)
v, 6 0
0
r
Tve Ve
- -t 8 i -
q e /cos = o2m B (1) sinoe ¥/%%%¢  noc o< (B-12)
v, 0 . v
v T
v

118



where the subscript e refers to the boundary-layer edge.

It is necessary to evaluate the boundary conditions on the left-hand-
sides of Egs. (E-11) and (E-12). First, consider the edge boundary condition
for Eq. (E-12). The first step is to evaluate this equation at the wall.

.
' T [}
N /cos

Ve -t/cos@
q; = q; + 2 BV(T)SinGe COSY% it le €© /2 <08 <m
v,Ge v,Ow

0
(E-13)

where the subscript w refers to the wall. Assuming diffuse reflection and
spectral emission from the wall with a transmissivity of zero, the heat flux

away from the wall is given byE‘4

q = - 2sin@ >9r+ (1 -
sinfBeos I_q ( a\) ) + nev B\)(Tw) /2 <6 <m

(E-14)

where vy is the hemispheric surface absorptivity and ey, is the hemi-
spheric surface emissivity and the minus sign arises because of the defini-
tion of 6. If it is further assumed that the coefficients ay, and e,  for a
given frequency v depend only upon the nature of the surface and the sur-

face temperature but not on the radiation field to which the surface is ex-

posedE_4
e, = a, (E-15)
w w
and Egq. (E-14) reduces to
- - . + _
qrv 5 = 2sinfbcosf [qrv (1 e, ) + "evav(Tw)] n/2 < 06 <
" w w w
(E-16)

+
The qrv which appears in Eq. (E-1€) can be expressed in terms of known
quantitfgs by evaluating Eq. (E-11) at the edge. That is
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T

-7 /cosé Ve
+ + Ve . -t/cos8
q = q e + 2m B (T)sinbe dt 0 <0 <n/2
rv,@ rv,Oe
d 0
(E-17)
which upon integration yields
T
/2 T, Jcos0 /2 Ve
q+ = q+ e € deé + 2m BV(T)sinQe_t/cosedth (E-18)
r, I, 6
w e 0

Exchanging the order of integration in the second term in Eq. (E-18) and
utilizing the exponential integral, defined by

1

Eo(t) = j unmZemt g, (E-19)
0

yields the following expression for q;

v
w

T
/2 -7, /cosé Ve
+ _ + e
q, —f 9, e ao + 2nf Bv(T)Ez(t)dt (E-20)

Introducing Eq. (E-20) into Eq. (E-16) yields the following expression for
the one-sided heat flux away from the wall evaluated at the wall

n/2

-7, /cosb
q; = - 2sinfcos6 ((1 - e, ) q: e € ae
Vlew w Vlee
0
Ty
e
+ ZHJ[ BV(T)Ez(t)dt + neVWPV(Tw) n/2 <6 <7 (E-21)

0
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Substituting Eq. (E-21) into Eq. (E-13) yields the following expression for
the one-sided heat flux away from the wall evaluated at the boundary-layer

edge
/ v
T cosf [‘ e
v : -t/cos6
q; = 2ne © BV(T)51n6e dat
v,0q A
L /cosé /2
- 2sinfcosé(l - e )e e a &y /bose'de.
w rv,eé e
o]

L /cos6 Ve

4msinfcosf(l - e e © ,/— B (TYE,(t)dt

Vo \Y 2
4]

Ty /cos@

e n/2 <8 < (E-22)

2n51n9coseevaV(T“)e

The first through fourth terms in Eq. (E-22) are, respectively, the contri-
butions from the radiation emitted in the boundary layer at all angles 6
away from the surface, the radiation incident at the boundary-layer edge
reflected from the wall, the radiation emitted in the boundary layer at all
angles € toward the su¥5a gésand the radiation emitted from the surface.
The common multiplier e '© represents the attenuation* of these types
of radiation as they pass outward through the boundary layer whereas E2(t)
represents the attenuation of the incident flux as it passes through the

boundary layer from the edge to the wall.

The one-sided heat fluxes can now be evaluated. Integration of Eq.
E-12) yields

*In that the valid range of 6 is from n/2 to m, the cosf is always
negative.
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) ) -(Tve-Tv)/cose
a = q. e ae

iE) T
Ve ~(t=7_)/cosb
- 2m B, (T) sinfe v datas (E-23)
n/2 T

Substituting for q;V P from Eq. (E-22) and inverting the order of integra-
Ve
tion yields

T m
- Ve (7,-t) /cos6
2m Bv(T) sinfe dedt
v
0 n/2

T /cosb
-2(1 -¢e ) ar e~ Ty /088" 35, sin6cosbe Vv as
v, r, g e
o e n/

Q
H
1i

Tv/cose
- 47 (1 - e, ) B (T)Ez(t)dt sinfcosfe a0

n/2

w

T /cos8
21'reV B (T ) sinfcosfe ¥ ae

T

Ve -(t—Tv)/cose
- 2n Bv(T) sinfe doat (E-24)

T n/2

v
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Utilizing the definition of the exponential integrals (Eq. (E-19)), Eq. (E-24)

becomes

T
~ Vv
e
q = 2ﬂj BV(T)EZ(TV - t)dt

o

n/2

+ -7 /cos0
2(1 - evw)E3('rv)[ q, e v, ao
0]

+

+

T
v
e
a7 (1l - e, )E3(Tv{jf Bv(T)Ez(t)dt
w
0

T
v
e

+ 2ﬂvePV(Tw)E3(Tv) - ZHJ/— Bv(T)Ez(TV - t)dt (E-25)

T
Y

Integration of Eq. (E-11) yields for the positive one-sided heat flux

n/2 n/2 T
+ + Tv/cose v ~({t~-T )/cosé
q, = d, e - 2n Bv(T)sinGe v dtdé (E-26)
v v,Gw
0 0 0
Substituting for q: from Eq. (E-17)
v,0
w
n/2 ) T n/2
+ + (rve TV)/cose Ve —(t—Tv)/COSQ
qr = q, e dé + 2nm B (T)sinfe dodt
V) v,fe v
0 0 0
U n/2
-(t-7_)/cos6
- 2n B, (T) sinfe v dedt (E~27)
0 0
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Again, in terms of exponential integrals

n/2 ~(1. =T )/cos6
+ + Ve VY
q = d e dae
r r
Vv \),Ge
0

T
A"

T
\)e
+ 211]r Bv(T)EZ(t - Tv)dt - Zﬁ]’ Bv(T)EZ(t - Tv)dt (E-28)
0 0

In accordance with the definition of Eq. (E-4) the net radiant heat
flux in the frequency interval dv is given by the difference of Egq. (E-28)
and Eq. (E-25). Upon combining terms

T T

Ve v
a, = ijr Bv(T)Ez(t - Tv)dt - ZHJ[- BV(T)EZ(TV - t)dat

T 0
v

T

v
e
- 2ne BV(TW)E3(TV) - 4n (1 - e, )E3(Tv)j( BV(T)EZ(t)dt

Vw w
0
/2 -(T_ -T.)/cosf
+ Ve Vv
+ a, e ae
v, 9y
0
/2 =T, /cosé
- 201 - e )E4(T) g e °© as (E-29)
w v,Ge
0

The net radiation heat flux, Qo is obtained by integrating Eq. (E-29)
over all frequencies

- E-30
a f a, dv (E-30)
0
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This integration can be approximated by considering the entire range of v
to be subdivided into M spectral bands of width évm. The "y and eyy
are assumed to be frequency independent within a single band but to vary
from band to band and are thus designated as % and e, respectively.
The choice of the number of bands, M, and the frequency interval of each
band, évm, can be made such as to approximate the actual %y to a given

degree of accuracy. The q, for this smeared-band model is given by

M Vm+6vm
Q. = Z j q, dv (E-31)
— v
m=1 Vi
It is convenient to define
vm+6vm
Bv(T)dv
Vm
B (T) = = (E-32)
J Bv(T)dv
0
where
@®
jB (Mav = <ot (E-33)
v ™

The net radiant heat flux toward the surface at the nodal point i is then

given by
’
M T T
m m,
e 4 i,
qri = ZE:<20J[ T B (T)E,(t - Tmi)dt - Zi/r T Bm(T)EZ(Tmi - t)dt
m=1 T 0
m,
i

T

m
4 € 4
-20e T B (T )E4(T ) - 40(L - e )E3(Tm_)f T°B_ (T)E,(t)dt
w 1 w 1
0

n/2 v tove m ~Tm ) /cosé T /cosb
+ @ av|le & - 2(1 - e JE5(1 e

] W i
v, B

—(T

(=]
<

(E-34)
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where from Eq. (E-9) Tm is given by

i
Th = J— pnmdy (E-35)

At the wall Eq. (E-34) simplifies to

M T
m
€ 4 4
a = Z 2e f "B, (T)E,(t)dt - oe T B (T )
w % W
m=1 0
/2 ¥m*OVn “m /coso
+ q+ avle e e a6 (E-36)
. r m
v,Ge W
0 v
m
since T = 0 and E3(Tm Yy = 1/2.
w w

The incident flux at the boundary-layer edge can be a function of fre-
quency and the angles 6 and o. Differentiating Eq. (E-3) with respect to

6 while considering 6 <« n/2 and integrating over the frequency range va
yields

vm+6vm 2n vm+6vm
G 4 = cosbsin® I, (0,%)dvdp 0 <6 <mn/2
v,ee o e
Vm Vm

(E-37)

The integrations in this term with respect to v and ¢ can be performed
a priori for each spectral band. The result is then substituted into Eqg.
(E-34) and (E-35) where the integration with respect to 6 1is performed.

The calculation of qri proceeds as follows. Given the temperature
and particle densities across the boundary layer, the Tmi and Bm(Ti) ma-
trices are computed for each spectral band m and for a finite number of
points across the boundary-layer i (nodal points in the numerical solution
procedgre). The integrations in Eqs. (E-34) and (E-35) are then performed
for each spectral band, and the contribution from each spectral band is

added to yield the q, -
i
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APPENDIX F

A STUDY OF DIFFERENTIAL VERSUS INTEGRAL PROCEDURES
EMPLOYING IDENTICAL SPLINE-FIT APPROXIMATIONS

There are three basic aspects to the integral matrix solution procedure
described in this report: connected cubics (spline functions) are employed
to relate the primary dependent variables to the transverse coordinate 1 ;
the differential equations are solved in integral form with a weighting
function which is unity between neighboring nodal points and zero elsewhere;
and Newton-Raphson iteration is utilized to solve the resulting set of linear
and nonlinear equations. The spline-fit approximation of the dependent
variables was a natural choice since smooth functions were desired to minimize
the number of nodal points and recent studies have shown spline functions to
be superior to single higher-order polynomials. Newton-Raphson iteration was
chosen in order to effect linearized coupling throughout the boundary layer.
However, the decision of whether or not to integrate and the choice of a
weighting factor necessitated some study. The results of these studies are
reported in this appendix.

As pointed out by DorodnitsynF_1

, solution of the boundary-layer equations
in differential form is equivalent to an integral solution using the Dirac
delta function as the weighting function. The question at hand then resolves
down to the choice of weighting functions. There are three approaches here:
the Dirac delta function (differential approach), a step weighting function

such as that used by PalloneF_Z, or a smooth weighting function across the

entire boundary layer such as that employed by Dorodnitsyn.F"1 The primary
distinction between these three approaches is that the first takes an
infinitesimally small sample (restricted to the nodal points themselves), the
second samples over a portion of the boundary layer, and the third samples

over the entire boundary layer.

Parallel developments were made for the first two approaches for non-
similar incompressible boundary layers, the only distinction being the choice
of weighting function. The results of this study were inconclusive with
regard to accuracy, convergence stability, and the number of iterations
required to achieve convergence. 1In particular, it was found that the
accuracy depends more upon the distribution of the nodal points than upon
the size of the sample. Therefore the choice of weighting function was made
on the basis of algebraic simplicity which favored step weighting functions
over Dirac delta functions or smoothly varying functions such as those used
by Dorodnitsyn.
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In the remainder of this appendix, Newton-Raphson recurrence formulas
are presented for the nonsimilar incompressible momentum equation for the
integral and the differential approaches. Results are then compared for the
case of an incompressible boundary layer on a flat plate and for a nonsimilar
boundary layer with an adverse pressure gradient. Finally, the algebraic

complexity of the two approaches is discussed.

In the case of an incompressible boundary layer, the energy and species
conservation equations are not needed, and the transformed momentum equation
(Eg. (55)) reduces to

" £ 2 , af' N SFf .2 d £n (IH
££f" + —;— + B(G - £'7) - 2|f SIn € - £ SInE - f IInE =0
(F-1)

The boundary layer at a given streamwise station is divided into N nodal
points, Ny o where i =1 at the wall and N at the boundary-layer edge.
In the integral approach, Eq. (F-1) is integrated at constant ¢ between

neighboring nodes, Ni-1 and ny -

i . i
" 1 fenlt 2 . Of! "
j f£" dn + a [f ] + BO,H(ST] - BJ’ d‘r] - Zf (f W £ m
. i-1 .
i-1 i-1
d £n a i
H 2 = -

i-1

As discussed in the present report, the fi s fi , f; , and f;' are expanded
about point i in terms of their n-derivatives by the use of Taylor series.
These series are truncated by considering the fg" to be constant between

ni and Ny - Thus, between each i and i+l the f 1is represented as

a quartic, the f' as a cubic, and the f'* as a gquadratic, whereas the f"' is
considered to vary linearly between each pair of n-stations, all of these
functions joining continuously at the nodal points. Utilizing the same pro-
cedure described in the present report for representing the streamwise deriva-
tives and evaluating the integrals which appear in Eq. (F-2), differentiation

yields the following Newton-Raphson recurrence formulas:
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£|_ A E" AQH

o -ttt +1 (1 + do)f + dlfz-l + dzfz_z A+ £'(1 + dO)Af
H H
n-1
dlaHz-l + d2aH£_2 [
+ ZBaHanaH - 2|1 +B + dO - o X0t
dlaﬂz—l + dzaHﬂ—z .
+ XZAfn + x3Afn + X4Afn—1 qz fnxl + fnx2
H

+OEXg 4 f;'\-l-lx4}AaH - Z[ZlAfr'] + ZLAEL + ZAELT + z4Af;;;l]

- ERROR (F-3)

where the ERROR is given by the left-hand side of Eq. (F-2) evaluated in the
previous iteration and the XPl » XP, , XPq and Xp, are defined by Egs. (86),
the 4, , dl and d2 by Egs. (88) or (89), and the Zp; , 2P Zp
zp, by Eq. (94).

2 and

3
In the differential approach, Eg. (F-1) is solved at each nodal point i

without integration. Utilizing the same procedure for representing the

streamwise derivatives, differentiation yields the following Newton-Raphson

recurrence formulas:

' . 17Hy) 4 27Hy 5
£(1+dy) Af -2 £ +d) £  +d, £ , - 2f T Af
" l_ F-410]
+ [f(l +dg) +4, £, +4d, f 2] AE" 4+ a Af
+|2 L lene 4 £02g +d Aq., = - ERROR
Pay - = 1% 2 %n 2% T T
Qg L -1 4 -2

(F-4)

where the ERROR is given by the left-hand side of Eq. (F-1) evaluated in the
previous iteration.

Velocity profiles for incompressible flow over a flat plate as reported
by I-IowarthF_3 and as obtained with the above-described integral and matrix
procedures are presented in Table F-1 in terms of the defined by Howarth

(which is VY2 times the n defined in the present report for this problem).
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TABLE F-1

VELOCITY PROFILES FOR INCOMPRESSIBLE FLOW OVER A FLAT PLATE
AFTER HOWARTH COMPARED TO 11-POINT INTEGRAL-MATRIX
AND DIFFERENTIAL-MATRIX SOLUTIONS

Velocity ratio

n of Howarth Howart‘nF_3 Integral-matrix Differential-matrix
0 0 0 o]
.4 0.13277 0.1328 0.1322
.8 0.26471 0.2646 0.2636

1.2 0.39378 0.3937 0.3916
1.6 0.51676 0.5166 0.5139
2.0 0.62977 0.6297 0.6263
3.0 0.84605 0.8462 0.8431
4.0 0.95552 0.9553 0.9564
5.0 0.99155 0.9913 0.9938
6.0 0.99898 0.9990 0.9999
7.0 0.99992 0.9999 1.0000
8.0 1.00000 1.0000 1.0000

Identical 1l-point nodal distributions were employed in the present calcula-
tions, namely, n = 0, 0.2, 0.5, 0.9, 1.4, 2.0, 2.7, 3.5, 4.4, 5.4 and 6.5.
The values of u/u, reported in Table F-1 were then computed from the £}
and their derivatives by use of the Taylor series expansions (Egs. (78)). It
can be seen that the integral-matrix solution agrees with Howarth's results
to four significant places and that the differential-matrix solution agrees
within a few tenths of a percent. Corresponding, the wall shear function,

£, » was 0.3320 and 0.3308 for the integral and differential procedures,
respectively, compared to 0.33206 reported by Howarth.

The problem of linearly retarded flow (ue/ueo =] - ax with a = 1/8 ),
first studied by HowarthF_3 and later investigated by Smith and ClutterF'4,
among others, was also considered. Wall shear function, f&, as obtained
with 6-point and 10-point integral and differential solutions are compared in
Table F-2 to results reported by Smith and Clutter. The latter results can
be considered as precise since they agree closely with those of other investi-
gators. They obtained this degree of accuracy by the use of small streamwise
spacing. The present results, on the other hand, were obtained with relatively
large streamwise spacing.(All stations considered in the present calculations
are shown whereas only a sampling of the Smith and Clutter results are

presented. The fact that streamwise spacing is affecting the present results
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TABLE F-2

WALL SHEAR FUNCTION ALONG A FLAT PLATE WITH LINEARLY RETARDED FLOW,
u =1 - x/8 , AFTER SMITH AND CLUTTER COMPARED TO 10-POINT AND 6-POINT
INTEGRAL-MATRIX AND DIFFERENTIAL-MATRIX SOLUTIONS

e

Type Ref. Differ- 1Integral 1Integral Differ- Integral Integral
F-4%*%* ential ential
No. of 10 10 10 6 6 6
n-points¥*
Normalized
distance, Shear function evaluated at the wall, f&
X
o] .4696 .4678 .4695 .4695
.01 .4645 .4663 .4663 .4656 .4660 .4660
.02 .4635 .4629 .4633 .4633
.04 .4555 .4573 .4579 .4582
.08 .4451 .4469 .4471 .4472 .4473 .4468
.12 .4343 .4361 .4362 .4362
.16 .4230 .4249 .4242 .4249 .4248 .4237
.20 .4114 .4114 .4133 .4133 .4130
.28 .3866 . 3886 .3872 . 3887 . 3879 .3862
.36 .3601 .3622 .3623 .3610
.44 .3315 .3338 . 3309 .3340 .3320 .3289
.52 .3006 .3030 .3002 .3034 .3002 .2972
.60 .2667 .2692 .2667 .2698 .2651 .2623
.68 .2288 .2316 .2291 .2323 .2251 .2225
.76 .1852 .1882 .1857 .1892 .1778 .1752
.80 .1653 .1605 .1638 .1612 .l649 .1504 .1478
.84 .1329 .1365 .1337 .1378 .1186 .1160
.88 .1100 .1000 .1042 .1010 .1059 .0809 .0784
.92 .0736 .0506 .0582 .0519 .0615 .0350 .0330
.94 non* ¥ non .01l62 non .0092
.96 0 (extrap) non non -.0132
.98 -.0351
1.00 -.0549
1.02 -.0754
1.04 ~-.0929
1.06 -.1135

*
10-point (y = 0, 0.2, 0.5, 0.9, 1.4, 2.0, 2.7, 3.5, 4.4, 5.4),

6-point (n = 0, 0.8, 1.8, 3.0, 4.4, 6.0).

** '3 .
Smith and Clutter results shown for representative streamwise stations only.

***nonconvergent
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can be seen by comparing the two 10-point integral solutions and the two
6-point integral solutions.) Looking first at the 10-point solutions, the
integral solution is slightly better except in the vicinity of x = .20

where the differential approach agrees with that of Smith and Clutter. 1In
the 6-point solutions, the integral and differential methods yield comparable
results until an x of 0.60 or so, after which the differential approach
yields better accuracy.

Since the comparison between the integral and differential approaches
was inconclusive with regard to accuracy and convergence considerations, it
was appropriate to consider algebraic complexity. Comparison of Egs. (F-3)
and (F-4) indicates that the differential approach is algebraically simpler
for the incompressible nonsimilar boundary layer. However, in the multi-
component boundary layer the situation is strikingly reversed. All of the
complexities introduced by multicomponent thermodynamic and transport proper-
ties in the energy equation and elemental species equations appear in flux
divergence terms (see Egs. (56) and (58)). Integration by a unity weighting
factor thus eliminates a derivative with respect to = so thal it is not

necessary to evaluate flux derivatives in the evaluation of the ERRORS. The
*
a

given by Eg. (50)). Thus, complete Newton-Raphson iteration requires evalua-

fluxes, in turn, contain derivatives with respect to = (see, e.g., the g

tion of second derivatives of state functions with respect to h and Rk

as well as first derivatives (see Egs. (129) and (132)). The differential
approach, on the other hand, would require the evaluation of second and third
derivatives of state functions with respect to h and ik for full Newton-
Raphson iteration. Thus, integration between 1 and i-1 1is by far the most

desirable approach from the standpoint of algebraic simplicity.
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